

SERENEDI

HEALTHCARE INTEGRATION PLATFORM

© 2024 CHIAPAS EDI TECHNOLOGIES, INC. ALL RIGHTS RESERVED.

REVISION 20241007

P a g e | 1

Contents
Licensing ___ 8

EVALUATION LICENSE ___ 8

Apache 2.0 license ___ 9

MIT License ___ 11

Introduction ___ 12

Technical Summary ___ 13

Operating Systems __ 13

Database Compatibility __ 14

Transformations __ 14

Graphical User Interface ___ 15

Specifications Supported ___ 15

Automation ___ 15

Scripting System __ 16

Licensing __ 16

Installation __ 16

Windows Installation __ 16

OPTIONAL: Visual Code Installation ___ 22

SERENEDI Overview ___ 23

Business Requirements __ 23

Automation System ___ 24

SERENEDI Engine ___ 25

Primary Registers ___ 25

Auxiliary Registers __ 26

Interfaces ___ 26

Integrity Validations ___ 26

BIN System __ 27

Changes from Chiapas EDI Enterprise ___ 28

Pipelines __ 29

QUICK START __ 29

Pipeline 001: Normalize __ 30

Pipeline 002: CSVFromEDI __ 30

Pipeline 003: CSVToEDI __ 31

P a g e | 2

Pipeline 004: XMLFromEDI __ 31

Pipeline 005: XMLToEDI __ 32

Pipeline 006: EDIToBIN ___ 32

Pipeline 007: EDIToHDB __ 33

Pipeline 008: BINToEDI ___ 33

Pipeline 009: Integrity ___ 34

Pipeline 010: Event __ 35

Pipeline 011: 275C Decode ___ 35

Pipeline 012: 275C Encode __ 36

Pipeline: SFTP_MIRROR __ 36

SERENEDI Studio ___ 37

Main Interface ___ 37

Control Pane ___ 38

SEG Interface __ 38

HKEY Interface ___ 39

FLAT Interface __ 39

BIN Interface __ 39

ACK Interface __ 40

Runbox ___ 40

Flat Pane __ 41

SegPool Pane __ 42

HKEY Pane __ 42

Triggers/Events Interface ___ 43

Triggers ___ 43

Events __ 46

Event Detail ___ 46

Event Messages __ 46

SFTP Interface ___ 47

SFTP Sessions __ 47

SFTP Session Detail __ 47

Local File System / Remote File System __ 48

BIN Interface __ 48

Endpoints Interface ___ 49

P a g e | 3

Endpoints ___ 49

Endpoint Detail ___ 49

Chiapas Gate Intermediate Format, Version 2 ___ 50

Introduction ___ 50

CGIF3 Loop Types ___ 51

Element Mapping ___ 52

Examples ___ 53

Encoding vs. Decoding ___ 58

Defaulted Scaffold Elements __ 58

Flat Interface __ 59

Encoding CGIF2 Flat to HKey __ 59

Potential Pitfalls of CGIF2 Flats __ 61

Decoding HKey to CGIF2 Flat __ 61

Hierarchical Database Interface __ 61

XML Interface __ 62

Technical Inventory ___ 63

SERENEDI TECHNICAL REFERENCE __ 64

OVERVIEW __ 64

Event System __ 65

SCORE Script System __ 65

Triggers ___ 66

Direct Injection ___ 67

XML Injection __ 67

SQL Trigger __ 67

File Trigger __ 68

Fire Logic ___ 68

SCORE SCRIPTS ___ 69

Setting the Base Directory __ 70

Installing the Environment __ 70

Handling the Event __ 71

Creating Outbound Transactions ___ 73

Tips for Creating Outbound EDI Files __ 74

Common Attributes of the Seed Extracts ___ 75

P a g e | 4

USP_270_EXTRACT__ 75

USP_271_EXTRACT__ 75

USP_275C_EXTRACT __ 76

USP_276_EXTRACT__ 76

USP_277_EXTRACT__ 76

USP_277CA_EXTRACT ___ 76

USP_278_REQ_EXTRACT ___ 76

USP_278_RESP_EXTRACT ___ 76

USP_820_EXTRACT__ 76

USP_820X_EXTRACT __ 77

USP_824_EXTRACT__ 77

USP_834_EXTRACT__ 77

USP_835_EXTRACT__ 77

USP_837I_EXTRACT ___ 78

USP_837P EXTRACT ___ 78

SERENEDI Architecture ___ 79

SerenediService __ 80

SERENEDI Command Line Arguments ___ 81

Worker Process __ 82

Trigger Scan ___ 82

Data Shuttle ___ 83

BIN_LOG __ 85

BIN_ENDPOINT ___ 86

BIZ_TRIGGER Table __ 87

BIZ_EVENT Table ___ 88

BIZ_MSG __ 89

SFTP_SESS __ 90

SYS_MSQ ___ 91

Sample Data Tables ___ 92

SAMPL_CLAIM ___ 92

SAMPL_CLAIM_DTL ___ 93

SAMPL_HEADER __ 93

SAMPL_MEMBER ___ 94

P a g e | 5

SAMPL_PROFESSIONAL __ 94

SAMPL_PROVIDER __ 94

Appendix A: SerenediAPI Workflow Reference __ 95

Global Variables __ 95

BIN COMMANDS ___ 96

sapi-FetchBinState __ 96

sapi-FlatForceMergeToBIN __ 96

sapi-FlatFromBIN ___ 97

sapi-FlatMergeToBIN __ 98

sapi-HKeyMergeToHDB __ 99

sapi-HKeyForceMergeToHDB ___ 100

sapi-HKeyFromHDB __ 101

CSV COMMANDS __ 102

sapi-CSVToDB ___ 102

sapi-FlatToCSV __ 103

sapi-FlatFromCSV __ 104

ENVIRONMENT COMMANDS ___ 104

sapi-ClearRegister ___ 104

sapi-EnvEndpointRemove ___ 105

sapi-EnvEndpointUpsert___ 105

sapi-EnvSFTPSessionUpsert __ 106

sapi-EnvSFTPSessionRemove ___ 107

sapi-EnvTriggerRemove ___ 107

sapi-EnvTriggerUpsert __ 108

sapi-FetchVar ___ 110

sapi-InitializeSession ___ 112

sapi-Reset __ 113

INTEGRITY COMMANDS ___ 113

sapi-AddIntegrityRule___ 113

sapi-CheckIntegrity __ 114

sapi-DisableIntegrityRule __ 114

MSGLOG COMMANDS __ 115

sapi-AddMsg ___ 115

P a g e | 6

sapi-GetMsg __ 115

sapi-MsgLogToFile ___ 115

sapi-MsgLogToHTML ___ 116

REGISTER COMMANDS ___ 116

sapi-AckFromFile __ 116

sapi-AckFromHKey ___ 116

sapi-AckFromSegPool ___ 116

sapi-AckToFile ___ 116

sapi-AckToHKey ___ 117

sapi-AckToSegPool ___ 117

sapi-FlatFromHKey ___ 117

sapi-FlatToHKey ___ 118

sapi-GenerateAck __ 119

sapi-ParseAck ___ 119

sapi-SegPoolFromFile ___ 119

sapi-SegPoolFromHKey ___ 120

sapi-SegPoolToFile ___ 121

sapi-SegPoolToHKey __ 121

sapi-SegPoolToHTML ___ 123

sapi-SetFlat ___ 124

SFTP COMMANDS ___ 124

sapi-GetSFTPDirectory __ 124

sapi-GetSFTPFile ___ 124

sapi-PutSFTPFile ___ 125

sapi-SFTPMirror ___ 126

SQL COMMANDS __ 126

sapi-ExecSQL ___ 126

sapi-FetchDTFromDB ___ 127

sapi-FetchDTFromDB1Row ___ 127

sapi-FetchScalar ___ 128

XML COMMANDS __ 128

sapi-HKeyFromXml ___ 128

sapi-HKeyToXml ___ 128

P a g e | 7

sapi-SetXML __ 129

sapi-XmlFromFile __ 129

sapi-XmlToFile __ 129

Appendix B: Specification Hierarchy Structures ___ 130

Appendix C: Specification Codes __ 139

Appendix D: Rules Engine ___ 140

REP CODE Overview __ 140

REP CODE Example ___ 141

Testing new REP CODES ___ 142

REP CODE Token Library ___ 143

P a g e | 8

Licensing
SERENEDI is Copyright © 2023 Chiapas EDI Technologies, Inc. All Rights Reserved.

EVALUATION LICENSE

Chiapas EDI Technologies, Inc., grants users a limited-time license to use and evaluate the SERENEDI software product

for internal testing and evaluation use only, for the period of one month from the initial start of the evaluation. This

evaluation software may not be used for production purposes. The software must only be distributed to User's

employees or contractors, and may not be used outside of the User’s business premises. Chiapas EDI Technologies, Inc.

disclaims any warranties, express or implied, about the suitability or functionality of this software for a particular

purpose.

The Electronic Data Interchange standards used in this software are copyrighted by the Accredited Standards Committee

X12 (ASC X12). Used under license.

Chiapas EDI Technologies, Inc. would like to express appreciation to the authors and publishers of the following libraries:

.NET 5 and .NET 8, © Microsoft 2021, under the MIT License

BouncyCastle.NetCore

Copyright (c) 2000 - 2017 The Legion of the Bouncy Castle Inc. (http://www.bouncycastle.org)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Microsoft.EntityFrameworkCore © Microsoft 2021, under the Apache-2.0 license

Microsoft.Extensions libraries, © Microsoft 2021, under the MIT license

System.Management.Automation, © Microsoft 2020, under the MIT license

Microsoft.PowerShell, © Microsoft 2021, under the MIT license

MudBlazor, © 2021 Garderoben, Henon and Contributors, under the MIT license

Serilog, © Serilog Contributors 2021, under the Apache-2.0 license

SSH.NET, © Renci 2021, under the MIT license

Inno Setup version 6.2.2, Copyright © 1997-2023 Jordan Russell. All Rights Reserved.

Portions Copyright © 2000-2023 Martijn Laan. All Rights Reserved. https://jrsoftware.org/

OpenPOP.NET (used for the MIME parser) – Released to the public domain

https://jrsoftware.org/

P a g e | 9

APACHE 2.0 LICENSE

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this

document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common

control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction

or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding

shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code,

documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not

limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by

a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for

which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of

authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link

(or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright

owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition,

"submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including

but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are

managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication

that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by

Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a

perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative

Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object

form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,

use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable

http://www.apache.org/licenses/

P a g e | 10

by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with

the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim

or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or

contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of

the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or

without modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and

attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do
not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License.
You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms
and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this
License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in

the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.

Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have

executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of

the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content

of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each

Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,

MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the

appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this

License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,

unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be

liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as

a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill,

work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

P a g e | 11

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to

offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with

this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not

on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability

incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

MIT LICENSE

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and

to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of

the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

P a g e | 12

Introduction
Integration is the combining of two systems so they are synchronized to act as one. Healthcare integration is the combining

and synchronizing of different healthcare systems, often across corporate boundaries, so they act as one. A simple example

of this is eligibility. If a provider group has a three-month-old snapshot of eligibility from the payer, it could be sending

claims to the payer for a patient who was disenrolled two months ago. These claims would be denied by the payer, and

the provider would be in the position of trying to collect payment from the patient. If both the payer’s and provider’s

eligibility systems were tightly integrated, this problem would cease to exist.

In the “old days” of healthcare, this integration was generally handled with flat files or CSV (Comma Separated Values) files

that were customized between trading partners as needed. In some cases, very large trading partners, like Medicare,

generated large, complex flat files that were consumed universally across the country. Although there were some attempts

to universalize file formats, little to no legislation supported them and therefore they lacked incentive. As a result, the late

1990s saw the healthcare industry with millions of proprietary data formats, and even small changes in business

requirements demanded heavy investment in development time.

Enter the Healthcare Insurance Portability Administration Act, or HIPAA: by federal law, trading partners would no longer

be allowed to exchange variable and custom file formats. Instead, the ASC X12 committee agreed on a fixed file format for

a specific business-to-business transaction and authored something called a HIPAA Implementation Guide, and then this

guide became the final law to determine what the file would look like and what data it could contain.

These implementation guides established a Rosetta Stone for the healthcare industry. The authors of the guides used their

industry knowledge to encapsulate all the different situations that can occur during these common business functions,

such as transmitting eligibility from a payer to a provider, and created a file format that could accommodate many different

business needs.

These new hierarchical data formats vastly differ from the CSV or flat files that came before. Furthermore, many of the

tools and technologies available to tackle these complex, hierarchical formats have a steep learning curve and a long

development time. SERENEDI is a third-generation healthcare integration platform—building on the 2003 product Chiapas

Version 1, and the 2012 product, Chiapas EDI Enterprise—designed specifically to address this complexity.

Designed by and for healthcare IT professionals, SERENEDI was in development for six years before we considered it ready

for release, and it brings powerful technology to bear on modern integration challenges. In a nutshell, it is a development

environment for creating automated, highly parallelized solutions that are natively capable of powerful healthcare EDI

translations. This software is compatible with Windows and Unix operating systems. It requires an SQL Server instance to

operate, but can send and retrieve data to and from different Microsoft SQL Server databases.

The underlying automation system is driven by a customized PowerShell Core 7 environment with over 60 additional

“cmdlets” that control the automation environment as well as the SERENEDI translation engine. The translation engine is

capable of transforming EDI to and from CSV, XML, and two different types of database storage systems. The predefined

field names are the mappings that bind data elements to the HIPAA EDI transaction sets. These are defined within the

CGIF2 mapping technology, detailed here in this manual.

To help offset the learning curve needed to create outbound EDI transactions, the SERENEDI distribution database ships

with the sample data and stored procedures that are used to generate the 14 “seed” files, one for each of the supported

5010 transaction sets. To query data on inbound EDI transactions, the built-in pipeline system has a rich set of capabilities

for transforming hundreds or thousands of EDI files into queryable database tables. This pipeline is the default automation

P a g e | 13

process for transforming EDI files into two-dimensional BIN tables, and is an easy place to start learning how the SERENEDI

engine works and what it does – you can start merely by dragging EDI files into the 01_in_edi folder and it will start working

from there. As the automation pipeline encounters new fields from the incoming data, the BIN tables are automatically

extended with new columns to hold this data.

The advantage of the Flat BIN system is that the data is very accessible; the disadvantage is that the denormalized nature

of the data makes it a bit more difficult to access some of the data that is stored that way. The Hierarchical Database is

another BIN system that trades accessibility for flexibility. Loops in the EDI transaction are stored in separate database

tables, but the cost is in complexity: you will need to know how each table relates to the parent table in order to parse it.

Data is stored much more efficiently with this system and takes less time to transfer.

Along with these database capabilities, SERENEDI contains a rules engine to measure EDI compliance with the rules defined

within the HIPAA Implementation Guides. This rules engine is user-extensible – if you need to add custom rules to analyze

incoming EDI transactions, the simple REP Code language is documented here to allow you to create new rules.

We hope this user manual clearly presents the capabilities of the SERENEDI engine, and we aspire to ensure that by using

these tools, you will be able to adapt to new challenges in the healthcare industry quickly and effectively.

Technical Summary

FEATURE CAPABILITY

Operating Systems Windows Server 2012 and above, Windows Client 7+.

Database Compatibility SERENEDI needs an instance of SQL Server 2012 or above for operation;
EDI data can be stored and retrieved from SQL Server databases.

Transformations SERENEDI can translate EDI files to and from CSV files, XML files, and
both flat and hierarchical database formats.

GUI SERENEDI includes an access-controlled, Blazor-based, web browser-
based interface that enables testing of transforms, maintaining triggers
and events, BIN activities, database endpoints, and SecureFTP sessions.

Specifications Supported 5010 270/271, 275C/275R, 276/277, 277 CA, 278 REQ & 278 RESP, 820,
820X, 824, 834, 835, and 837 I & 837 P. Integrity checking of SNIP Types
1 and 2 is supported for all of these transactions, whereas 834/835/837
I/837 P support deeper SNIP Type 5 integrity checks with a user-
extensible rules engine.

Automation Events are generated based on file-system triggers or SQL-based
triggers, or based on date and time criteria.

Scripting System SERENEDI events are handled by a custom PowerShell Core
environment with custom extensions. Visual Code IDE debugging is
supported.

Licensing SERENEDI is licensed on a per-server, per-year basis, with a next-
business-day SLA for email support and a number of hours of Tier 2
direct support renewed annually.

Operating Systems

SERENEDI operates primarily on Windows 10/11 and Microsoft Server 2019 and above. SERENEDI does not need internet

access – as long as you are able to update a single license file once a year, SERENEDI should be able to run without

interruption.

P a g e | 14

That said, it’s important to note that SERENEDI’s graphic development environment, SERENEDI Studio, is a web app served

directly from the installed application. Unless external IP addresses are whitelisted, SERENEDI Studio will only launch from

a web browser on the server itself. If the server operating system doesn’t have a GUI shell, the GUI will be inaccessible.

The GUI can be completely disabled if needed. To enable remote access, the server must be set up to respond to the same

subnet as the end-user and firewall rules must be in place.

Database Compatibility

SERENEDI requires an SQL Server instance, version 2012 or above, to run the serenediCore distribution database. This

contains all the core tables SERENEDI needs to function. Any tier of SQL Server version 2012 and above is capable of running

serenediCore, but be aware that the free tier of SQL Server is limited to database sizes of 10 GB or less.

By default, SERENEDI sends decoded EDI information submitted to its Decode pipelines to the serenediCore distribution

database. It is possible to send this data to an external SQL Server database by configuring database endpoints within the

environment and directing pipelines to use this endpoint. All column names used by SERENEDI are 30 characters or less.

Transformations

Out of the box, SERENEDI can transform the supported HIPAA EDI transactions to flat database tables, hierarchical database

tables, XML files, and CSV files. Because SERENEDI has every valid HIPAA EDI element built in and pre-mapped, this

capability is built-in and nonconfigurable. The output of one EDI conversion is a complete representation of all data

elements within the original file, and the bidirectional capability of SERENEDI provides the capability to reverse the

transformation and create a binary-accurate representation of the original file.

EXAMPLE:

As a quick introduction, let’s say you need to get all the unique subscriber last names from two gigabytes of mixed 837

Professional files. Starting from a fresh SERENEDI installation, you would need to do the following:

1. Drag all the files into the <install folder>/serenedi/pipeline/006_EDIToBIN/01_in_edi.

2. Wait for them to finish processing.

3. Run the following query:

SELECT DISTINCT(L2010BA_NM103PERSN_LNM) FROM BIN_5010_837P

The 006_EDIToBIN Pipeline demonstrated in this example is ideal for data warehousing and querying the data as simply as

possible – it will stuff all the EDI’s transaction data into a two-dimensional data table, and will also automatically expand

that table’s schema when new EDI fields are encountered. There are two main tradeoffs with using this method: first, these

two-dimensional projections of a hierarchical data source store data very inefficiently; and second, extracting certain data

elements can be difficult because header-level elements are repeated across database rows.

The 007_EDIToHDB Pipeline stores hierarchical data by assigning one database table for every loop defined by the

implementation guides, with rows of each table identified by a unique ID specific to the file as well as a parent-child key

mechanism that preserves the data aggregation present within the original EDI file. Thus, all line items stored in the 2400

loop table are keyed to one row in the 2300 claim table, and so on up to the ISA loop header table. This eliminates data

redundancy, but also makes it more difficult to make ad-hoc queries of the data, as you need to know how these tables

relate to one another.

P a g e | 15

On the other side of the coin is encoding, creating new EDI files from your enterprise data. The learning curve here is

steeper, as you need to become very familiar with the column-naming convention SERENEDI uses to project this data. The

distribution database ships with a number of SQL-stored procedures that pull some sample, fake PHI together in a way

that can be fed to SERENEDI and generate the sample EDI files. These “seed” files can be used as a starting point for

developers creating their own EDI extracts. One key point to remember here is that decoding can be done without

development. If you are challenged to find a way to make SERENEDI encode a certain sequence of segments, it is easy to

manually create an EDI file with these segments and then decode it to see how SERENEDI translates the information.

Because this is a bidirectional transformation, you learn the exact data and mappings you would need to supply to get

SERENEDI to encode it.

Graphical User Interface

SERENEDI ships with a graphical user interface (GUI) called SERENEDI Studio to enable you to test various transformations

and see the results in real time. This web app allows you to test database extracts you have created using database

development tools (such as SQL Server Management Studi). This way, you gain immediate feedback about the validity of

your mappings and logic.

In addition to this, SERENEDI Studio enables you to create and maintain triggers that control the highly parallel automation

system, SecureFTP sessions that enable SFTP access, and database endpoints that enable access to databases outside of

the distribution database. Furthermore, it allows you to see the status of BIN items that have been committed to the BIN

system.

SERENEDI Studio does not directly make writes to the distribution database – instead, it leverages the SCORE scripting

commands to make these changes, and it provides a record of these commands in the runbox on the main screen of the

interface. This fulfills a second role of SERENEDI Studio: to help end-users learn the commands that drive the automation

environment.

Specifications Supported

SERENEDI deeply targets the transactions used most in the healthcare industry: 5010 270/271, 275C/275R, 276/277, 277

CA, 278 ACK, NOT, REQ & RESP, 820, 820X, 824, 834, 835, and 837 I & 837 P.

When decoding EDI files, the SERENEDI Engine will check basic syntax covering segment repeats, loop repeats, and

segment composition. For the 834 Eligibility, 835 Remittance, and 837 Institutional and Professional specifications,

SERENEDI has a user-extensible rules engine covering over 300 distinct validation rules. The engine will optionally check

code-set compliance during decoding, covering claim adjustment reason codes, remittance adjustment reason codes, ICD

9 & 10 CM & PCS code sets, claim frequency codes, provider taxonomy, state abbreviations, and ISO country codes. Updates

for these code sets are downloaded from the SecureFTP site that distributes the SERENEDI binaries.

Automation

SERENEDI uses a multi-process model for automation. Triggers are scanned by a background service, and when firing

criteria are discovered, new events are created. A number of background worker processes poll the events table, and when

they discover new work to do, they take ownership of that event and run a SCORE script – a concatenation of SERENEDI

and PowerShell Core. When the SCORE script has finished executing, any messages regarding errors that occurred along

the way are inserted into the messages table. If a critical error occurs at any point, the event is flagged as such at the high-

level events table so it can be more easily caught and researched.

P a g e | 16

Scripting System

SERENEDI uses PowerShell Core for its versatility and cross-platform compatibility. PowerShell Core scripts (“SCORE”

scripts) spawn an instance of the SERENEDI translation engine and contain all the dozens of custom commands that work

with that engine. Normally these scripts are executed sight-unseen using parameters passed to it by the automation

system. However, it is also possible to run the script within a Visual Code interactive shell and to run it line by line, provided

a few commands are inserted at the top of the SCORE script that initializes the SERENEDI engine. In this way, SERENEDI

leverages proven, open-source development and debugging environments to speed the development of complex business

processes.

If a particular integration task is not provided within the SCORE scripting environment, it’s quite possible to extend the

functionality by linking to outside libraries for many tasks.

Licensing
SERENEDI is generally licensed in two ways: either as an evaluation, or with full production licenses. For production,

SERENEDI is licensed on a per-server basis, which is renewed annually. For more information, see the licensing terms that

came with the distribution.

Installation
SERENEDI can be installed to a Windows (Server 2016 or Windows 7 Client and above).

Internet access is not required for any function. License renewals are performed by replacing a single licensing file once a

year. SERENEDI needs access to an SQL Server instance (2012 or above) in order to function. SERENEDI can store and

retrieve data to and from SQL Server databases, and requires a SQL Server for installation.

The user interface displays the current state of the SERENEDI environment and provides tools that are useful during

development or troubleshooting of production processes. By default, this interface only responds to web browser

connections launched locally from the SERENEDI server (it restricts connections to the localhost 127.0.0.1 IP address). The

interface can be disabled two ways: via the command line that launches SERENEDI, or by renaming the SERENEDI Studio

binary file.

SERENEDI requires at least 4 GB of RAM for the base installation. If the licensing tier enables additional cores to run,

SERENEDI requires 1 GB of RAM per additional core. On Windows installations, it is necessary to have local administrator

privileges to install the package.

Note that SERENEDI is currently being deployed in two major versions. The largest difference is that of the .NET library;

the 2020 version of SERENEDI uses PowerShell Core 7 in conjunction with .NET 5, while the latest builds are produced

using PowerShell Core 7 in conjunction with .NET 8.

Windows Installation

BASE REQUIREMENTS

Operating System: Windows 7 / Windows Server 2016 and above

Prerequisites: Access to SQL Server 2012 or Above

 A login account with local administrator access

P a g e | 17

RAM SERENEDI requires at least 4 GB of RAM to function. If SERENEDI is licensed for additional cores,

it requires 1 GB of RAM per additional core.

Storage: The base installation requires 1 GB of free disk space. The pipeline folder may consume many

GB of additional disk space, depending on your usage.

INSTALLATION

1. Gather the following prerequisites:

a. SQL Server: SERENEDI requires a running SQL Server instance; the examples included in these

instructions assume that it was installed:

i. Using an server instance name of MSSQLSERVER (and not ./SQLEXPRESS)

ii. Using SQL Mixed Mode authentication

iii. Using an ‘sa’ password of ‘strongPass1’

b. An account and password with local administrator privileges: This is the account that will be used with

the SERENEDI Service that is installed. If this is a domain account, it should be expressed in the form

DOMAIN\username. If it is a local account, it should be expressed as ‘.\username’ (no quotes).

c. SQL Server connection string: This defines the location and possibly the login credentials of the SQL

Server account. For different examples of the connection string, visit

https://www.connectionstrings.com/sqlconnection/ This connection string will be used in conjunction

with the supplied login credentials above to access the SQL Server specified above. It will also specify

the name of the distribution database – by convention, this is normally called ‘serenediCore’.

2. Run the Installer

a. The SERENEDI Windows installer is a single MSI file, around 120MB in size, looking like this:

b. It will likely be named differently than as listed here. Double click on it, and you should receive this

popup – click Yes to continue:

https://www.connectionstrings.com/sqlconnection/

P a g e | 18

Click “Yes” to continue.

3. Accept the License Agreement

Click “I accept the agreement” and hit Next.

4. Read the installation instructions

Click “Next” when you are finished reading.

5. Fill in the Prompts

P a g e | 19

The Domain\Username prompt is the login credentials used to use the Windows Service. If you are using a local

domain account, use “.” For the domain – for example: .\admin

Enter the password associated with that account in the password prompt.

Finally, enter a connection string that SERENEDI will use to connect to an existing serenediCore database (which

it will attempt to upgrade, if it has not been upgraded), or to create a new serenediCore database if one does not

exist on that server. An example connection that would connect to a local SQL Server instance with an

administrator password of ‘strongPass1’ is as follows:

Data Source=(local);Database=serenediCore;User id=sa;Password=strongPass1;TrustServerCertificate=true;

6. Enter the Destination Folder

Enter the destination folder for SERENEDI, or use the default in place, and hit “Next.”

P a g e | 20

7. Confirm the Installation

Press “Install” to start the installation process.

8. Confirm success: If all steps are successful, you should get a Setup Complete dialog. To further ensure normal

operation of SERENEDI, go to C:\serenedi\shared\pipeline, and look for the following folder structure:

If this folder structure exists, then SERENEDI is running and processing events successfully.

TROUBLESHOOTING:

1. If upgrading the schema of an existing database and you do not see the new 011 and 012 pipeline folders

appear, try running the command on the associated distribution SQL Database:

insert into BIZ_EVENT (event_data3, event_data4) select 'INITIALIZE', '$\Pipeline.ps1'

2. If you have problems, try validating the SQL login credentials. You may have to install SQL Server

Management Studio in order to test the login credentials to the server.

3. Most operations are logged to the serenedi root folder under a file called “install_log” – see if there are any

problems there.

P a g e | 21

(OPTIONAL) Disabling the SERENEDI Studio

SERENEDI uses an HTTP web browser user interface that listens on port 5000 on the local machine when SERENEDI Service

is started. By default, the web server will ignore any connections except those originating from the same machine. In

certain situations, it may be desirable to disable SERENEDI Studio.

To completely disable SERENEDI Studio, run the following steps:

1. Run regedit from the command prompt to edit the registry.

2. Go to this key by entering this into the registry path window, and hitting enter:

Computer\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\SERENEDIService

3. Double click and edit “ImagePath” – remove the word “STUDIO” from the expression. The resulting string should

look similar to this:

C:\serenedi\bin\serenedi.exe SERVER SC H:C:\serenedi MSSQL…. <SQL string omitted>

4. Press OK, then restart the SERENEDI Server windows service. The SERENEDI Studio interface should now be

disabled.

5. If you need to reinstate the SERENEDI Studio, follow the same instructions, but in step 3, add the STUDIO string so

that that the string will appear like this:

C:\serenedi\bin\serenedi.exe SERVER STUDIO SC H:C:\serenedi MSSQL…. <SQL string omitted>

WARNING

SERENEDI is designed to be used on security-hardened servers containing Protected Healthcare Information (PHI).

SERENEDI Studio is a development and diagnostics tools designed to give extensive access to both the server file system

and the database environment; it is not security-hardened. By design, it uses unencrypted HTTP connections. If the default

settings are overridden and external IP access is opened to the Studio interface, it is your responsibility to ensure that all

PHI remains encrypted and that no PHI is transmitted across insecure lines.

P a g e | 22

OPTIONAL: Visual Code Installation

SERENEDI processes are driven by SCORE Scripts, which are PowerShell Core scripts with SERENEDI-specific command

extensions. SERENEDI is distributed with a single SCORE script called ‘Pipeline.ps1’, that both sets up and handles the

default integration environment. When clients need to customize this script or create brand new ones, they have the

option to use the Visual Code development environment with full support for the SERENEDI extensions – this enables users

to use breakpoints and the Visual Code debugger to develop new integration scripts.

For Windows-based SERENEDI Installations:

1. Install the latest version of PowerShell Core 7.X

Go to the page https://docs.microsoft.com/en-us/powershell/ and choose the PowerShell Core installer topic for

your operating system. Make sure you are installing Power Shell Core 7.X.

2. Install Visual Code

Go to the page https://code.visualstudio.com/ and follow the instructions to install it on your operating system.

3. Launch Visual Code

4. Install the PowerShell Extension

Click the Extensions icon (circle, far left) and enter “powershell” in the search window (second circle, top left). Click

Install.

To activate the SERENEDI extensions, Visual Code must be executed on a licensed SERENEDI server, and you must add these

lines to the top of every PowerShell script:

Set-Location C:\serenedi\bin
Import-Module -Name (Resolve-Path 'serenedi.dll')
sapi-InitializeSession -BasePath 'C:\serenedi' -MSSQL 'Data
Source=(local);Database=serenediCore;User
id=sa;Password=strongPass1;TrustServerCertificate=true;'

The first command loads the SERENEDI library, and the second command initializes a new session. The BasePath argument

points to the base SERENEDI folder; the MSSQL argument provides the connection string to the serenediCore database.

These arguments are required. It is also possible to supply one additional argument, -BizEventId – this will allow you to

recreate failed process events and step through the execution with the Visual Code debugging environment.

https://docs.microsoft.com/en-us/powershell/
https://code.visualstudio.com/

P a g e | 23

SERENEDI Overview
This chapter will explain how to use the major features of SERENEDI. First, we’ll review the business requirements behind

the architecture. Then we’ll explore the automation system, the SERENEDI engine that runs all workflows, and the BIN

system that stores EDI data in a human-accessible form. We’ll examine changes from Chiapas EDI Enterprise, and, finally,

we’ll walk through the Pipeline system. Those of you wishing to immediately get hands-on with the system can skip directly

to the Pipeline section, as that also functions as a Quick Start guide to using SERENEDI.

The SERENEDI Technical Reference section goes much deeper into the details of the SCORE script commands, rules engine,

and table schemas used in the distribution database.

Business Requirements

Before we go into the specifics of SERENEDI, we need to review the exact business objectives this technology is addressing.

These are explained in the three guiding principles of SERENEDI’s design, the Three P’s:

PARALLELISM

Bottlenecks are very common in the healthcare IT space. When building new systems, legacy components can sometimes

severely limit the potential to achieve objectives. For example, when building a claim processing system, you may find that

a legacy eligibility-checking component is limited to one eligibility verification per second. This severely limits the systems

you can build that rely on this mechanism.

SERENEDI is built from the ground up to handle multiple operations simultaneously, with special considerations to prevent

database “locking” scenarios when storing data in the database. The error-logging and data-storage systems contribute to

an automation environment designed to take full advantage of modern hardware.

PORTABILITY

The rise of Unix-based operating systems means that sometimes the computing resources available are far from

homogenous – it’s very common for IT server rooms to be filled with both Unix-based and Windows-based servers.

Furthermore, even without that consideration, most healthcare solutions are designed on a developer server, tested on a

QA server, and released on a production server, meaning that the solution has to be migrated at least twice before running

in production. If a solution is portable, it’s easy to make this migration – and the less portable it is, the harder the process

becomes.

SERENEDI makes it possible to develop a solution on a Windows-based workstation, test it on a Unix-based QA server, then

release it on a Windows production server. A good example of this is the SERENEDI Pipeline system, which ships as a single

SCORE script that quickly inflates to an entire directory heirarchy and over a dozen event triggers when the SERENEDI

system is first started. This single script works the same on Windows and Unix, and because the script is broken up into

different functional modules, it’s easy to develop and maintain.

PROJECTION

This software is primarily focused on one driving requirement: enable users to focus on the business data within HIPAA

EDI transactions, and not on the transactions themselves. Because healthcare data requirements are so complex across

the United States, the EDI formats themselves are also complex, so this is not easy to do.

There are a number of different technological solutions to this problem. Some parse EDI transactions with an XML schema

and then let users map individual fields, one by one, to their own data requirements. Others give a fixed, preset translation

P a g e | 24

capability and provide a number of database tables for the supported transactions; customization is often difficult for

these solutions.

SERENEDI’s approach is a bit different. Its proprietary technology projects EDI transactions directly into three formats: XML,

database flat table, or database heirarchical table. This projection is bidirectional, and as long as SERENEDI’s mapping rules

are maintained and the file is completely HIPAA compliant, it can reproduce the original EDI transaction character for

character. These projections are completely automated, “black box” operations that are built into SERENEDI.

If you are a developer who needs to extract business information from large amounts of existing EDI files, this capability

lets you complete your work using only the existing pipelines as-is and accessing the data elements using SQL-stored

procedures and views.

If you need to create new outgoing EDI files, you’ll need to learn more about the CGIF2 (Chiapas Gate Intermediate Format

Version 2) mapping system. It helps that you can always add new segments, decode them, and see how they are mapped

in real time with the user interface tools provided. Furthermore, a collection of views and sample data enclosed with the

distribution database keeps you from ever having to start completely from scratch.

Automation System

Once SERENEDI is installed and linked to an instance of the distribution database, SerenediService starts up. This service

is kept purposefully lightweight so it can run for many months without disruption and is responsible for launching other

processes as needed. When it first starts, it assesses the cores allowed under the license and the physical cores available;

whichever is less is the maximum number of worker processes allowed. This sets a ceiling on the simultaneous number of

worker processes according to both the licensing and the limits of the server.

SerenediService handles the following tasks:

Trigger Scan

This process loads in the active triggers and polls the trigger criteria at a preset interval. When trigger-firing criteria are

met, events are generated.

Worker

SERENEDI maintains a small number of workers that poll the distribution database constantly for new work in the form of

events generated by trigger scans. When a large number of events are pending, SERENEDI scales up the number of

simultaneous workers, but otherwise keeps it to a quarter of the maximum to minimize unnecessary database polling.

Each event is tied to a SCORE script, which the worker runs with the arguments associated with that event. If a worker

process exceeds four hours to execute a script, it is forcibly terminated and the worker slot is made available again.

Data Shuttle

The data shuttle is an ongoing process that enables the BIN system – a way to decode large amounts of EDI files into

human-accessible database tables. Table schemas are dynamic in the BIN system and can expand according to the needs

SERENEDI SERVICE

Triggers Workers Shuttle Studio

P a g e | 25

of incoming data. However, by ensuring that only the data shuttle process is moving data to the destination tables and

altering schemas, it avoids the schema locks that would occur if multiple worker processes were trying to insert data and

expand the schema at the same time.

SERENEDI Studio

The SERENEDI Studio process is a web app that is accessible on the server machine and allows developers to test various

data transformations as well as see the current state of the BIN, triggers, endpoints, and SFTP systems. This defaults to

port 5000, and by default does not accept connections except from browsers launched on the server itself. The Studio

process can be completely disabled and can be configured to accept outside connections.

SERENEDI Engine

The SERENEDI engine is the environment that is loaded every time an event is fired. Aside from the registers used for

logging messages and generating Transaction Acknowledgments (defined within specification 999A1), there are three

primary registers: SegPool, HKey, and Flat. These are shown in the following diagram. The green border indicates registers

that support bidirectional projection, meaning that data can be transformed laterally between the three registers in

addition to the methods listed on the Interfaces line.

The SERENEDI engine is composed of several parts: the registers, the interfaces, and the Integrity Rules Engine.

PRIMARY REGISTERS

SegPool

This register is the built-in representation of an EDI file. It interfaces directly with the file system to load and store EDI files.

HKey

This register represents an internal representation of an EDI file, laid out in hierarchical form. The process of projecting the

SegPool to the HKey register is normally called decoding, whereas projecting from HKey to SegPool is encoding. HKey

registers can be stored as XML files on the file system, to an internal XML register, or translated to a series of database

tables where each table represents data stored in one loop.

Register
Name

Purpose

Interfaces

SERENEDI Engine

SegPoolAck

Acknowledgment

Raw EDI File

SegPool

Raw EDI

Raw EDI File

HKey

Hierarchical EDI Projection

XML SQL HDB

Flat

Tabular EDI Projections

SQL DB CSV

MsgLog

Messages and Errors

SQL Table CSV

P a g e | 26

Flat

This register represents a two-dimensional view of hierarchical data, with the data heavily repeated row after row. It is

often the projected form of EDI data that is easiest to work with for normal operations.

AUXILIARY REGISTERS

SegPoolAck

This register stores a secondary SegPool completely dedicated to generating or parsing 999 Acknowledgment files. It

provides a simple facility for generating transaction acknowledgments without needing to unload the primary SegPool

register first.

MsgLog

This register stores all errors and messages accumulated during a workflow execution. The automation system will then

normally push those messages to the BIZ_MSG table on the distribution database.

INTERFACES

Interface Business Role

Raw EDI Files These are the basic units of transaction containing PHI (Protected Health Information) between
two enterprises.

XML An XML-readable version of an EDI transaction enables NoSQL/XML-based database systems to
ingest and process healthcare information. For enterprises that are accomplished in creating XML
files, this is also an avenue to create transactions.

Hierarchical
Database Tables

The HDB interface lets a transaction be split up into a number of tables, one for each loop within
the transaction. Each row in each table is assigned a unique BIN ID for the whole transaction.
Because the data is stored in a highly optimized way, it’s ideal for high-speed decoding at the cost
of a higher complexity of tracking the relationships between parent and child loops, which mirrors
the way they are arranged in the implementation guides. For some transactions, creating files
with logically arranged hierarchical tables may be easier than creating a flat projection of the data.

Flat Database
Table

This is normally the easiest way to create or retrieve EDI transaction data, as all healthcare data
for a transaction is projected into a single database table that can be queried or created. All the
sample EDI transactions are created by a single stored procedure associated with each transaction
to serve as a springboard for creating new transactions. This simplicity comes at the cost of highly
denormalized data storage.

CSV File This stores data in exactly the same way as the flat database table, except that it’s stored in CSV
files on the file system. It’s provided for use with legacy enterprise systems that can only accept
or export CSV data. Also, CSV files can easily be opened with Microsoft Excel.

INTEGRITY VALIDATIONS

Code Set Checks

SERENEDI does not check for code-set compliance by default. The SCORE Script command sapi-SegPoolToHKey, which

decodes incoming EDI files can be made to do so with a command-line flag -EnableCodeSetChecks. The following code

sets are validated during decoding:

Code Set Source

Claim Adjustment Reason Codes Washington Publishing Company

P a g e | 27

Remittance Adjust Reason Codes Washington Publishing Company

Claim Frequency Codes Washington Publishing Company

ICD-9-CM Diagnosis Codes CMS

ICD-9-PCS Procedure Codes CMS

ICD-10-CM Diagnosis Codes CMS

ICD-10-PCS Procedure Codes CMS

National Drug Codes CMS

Provider Taxonomy Codes Washington Publishing Company

State Abbreviation Codes United States Post Office

ISO Country Codes United States Post Office

These code sets are on a twice-a-year basis on the first of February and September; see the root folder of your Chiapas

EDI Enterprise SecureFTP folder to obtain code set updates. Replace the existent files in the “resources” subfolder to

update the codesets.

Integrity Rules Engine

SERENEDI is capable of five levels of SNIP integrity checks for incoming EDI file decoding operations. The SNIP Type checks

are summarized here:

1. Integrity Testing – Basic segment and element integrity checks

2. Requirement Testing – Validating the presence of elements, segments, and loops marked as mandatory

3. Balance Testing – Testing of monetary totals across loops and transactions

4. Situational Testing – Testing of specific inter-segment situations

5. External Code Set Tests – Testing specific values being present in predefined code sets

6. Line of Business Testing

SERENEDI runs SNIP Type 1 and 2 validations automatically across all file decodes – this cannot be disabled. SNIP Type 5,

External Code Set Tests, is an optional integrity check that executes during decoding. SNIP Type 3 and 4 rules are parsed

using the built-in Integrity Rules Engine. These rules can only be executed after the file has been successfully decoded.

If you need to add SNIP Type 6 Line of Business rules for a particular trading partner, you have the ability to add new rules

with the user-extensible rules engine.

BIN System

SERENEDI’s data storage system was designed according to the following business requirements:

1. Provide a scalable solution to ingest large amounts of EDI data across multiple SQL Server databases

2. Make this EDI data easy to access with common SQL queries and stored procedures

3. Make the data accessible in two ways:

a. The Flat BIN system is a two-dimensional, denormalized representation of heirarchical data that is the

easiest to use for reading EDI data or for encoding simpler EDI files.

P a g e | 28

b. The Hierarchical BIN (HDB) system stores data using tables in which data from every loop is stored in

separate, linked tables. It stores data more efficiently and makes it easier to encode complex situations, at

the cost of needing to track the interrelationships of the tables.

By default, SERENEDI ships with two pipelines that automatically decode files to the distribution database, 006_EDIToBIN

and 007_EDIToHDB. Unless overridden, they will go to data tables that are named according to the specification of the

data. An incoming 837P file will go to BIN_5010_837P for that Flat interface. For the HDB interface, it will decode to a

number of tables matching the loops it contains: HDB_5010_837P_ISA, HDB_5010_837P_GSHDR, and so on.

When a workflow pulls in data during execution, the data is not immediately inserted into these destination tables. Instead,

it goes to a temporary table named according to this convention:

Flat: T_<event Id>_<10-digit random number>

HDB: T_<event Id>_<increment>_<10-digit random number> for each loop in the incoming file

The background data shuttle process transports the data from the temp tables to the actual BIN table destinations. Unless

overridden, by default, the data shuttle will alter the destination table schemas to add new data elements when they are

encountered. That is, if the existing database schema does not hold the data elements needed to accommodate the

information coming with the new incoming EDI file, it will be expanded so the new data can be stored. This is called a

ForceMerge operation. The Merge operation will prevent the data shuttle from expanding the schema, and instead raise

messages when data is encountered that cannot be stored in the existing schemas.

The data shuttle ensures that data can be streamed into a database from literally over two dozen active operations, and

that the data will all reach its destination in the same way. This fulfills requirement 1.

Requirement 2 is fulfilled by having all of the decoded data in a form that is fairly straightforward to access using normal

SQL. Requirement 3 is fulfilled by the two methods of data storage allowed by the BIN system.

NOTE: The background data shuttle process handles all schema alterations in real time, without needing user intervention.

However, this process can be “frozen” by external factors if you use database cursors to open the BIN tables. The cursors

could open up a schema lock that prevents the schema from being changed while the cursor is reading data. This can

severely delay the speed at which SERENEDI processes data. The best practice is to access the BIN and HDB data using only

set-based operations. If you need to iterate the data in a cursor, copy the rows you need into a temporary table, and then

iterate those records – this way, the main BIN tables will not be locked by a long-running read operation.

Changes from Chiapas EDI Enterprise

Those of you who have experience with the previous generation of our EDI product should know that we have changed

many aspects of the platform. Here are some of the biggest changes between Chiapas EDI Enterprise and SERENEDI:

1. The architecture behind the CGIF mapping technology has been heavily revamped to reduce the number of

possible mappings. This was done by adding new cutout loops that place “solo” infinitely repeating segments into

their own pseudo-loop and improve accessibility to the data in most situations. This means that many mappings

in the previous version condense to fewer mappings in the new address space, and that the data can be retrieved

from different table rows in both the Flat and HDB interfaces. In essence, the update made in Chiapas EDI

Enterprise to handle PLB segments with a few mappings is now used throughout all specifications in SERENEDI.

P a g e | 29

2. As a result of the fewer mappings, the BIN system now defaults to a ForceMerge as the primary mode of

functionality. New columns are automatically added to the BIN table as they occur, by default, and this is

seamlessly handled by the automation system running at full volume.

3. Windows Workflow Foundation has been replaced with PowerShell Core as the main scripting system for

SERENEDI. PowerShell Core is completely supported cross-platform, whereas Windows Workflow Foundation

could only function on Windows platforms and also experienced very limited adoption. PowerShell Core,

implemented in SERENEDI as SCORE Scripts, is a completely cross-platform way to execute workflows.

4. SERENEDI Studio is now entirely a client-hosted intranet application as opposed to a locally installed Windows

Presentation Foundation application. This mitigates the need for local client installations. The GUI is now a web

page that can be accessed by default locally from the server, or externally from the server if further setup is

done.

Pipelines

The built-in pipeline system is designed to be a highly

accessible, easy-to-use method to access the core

conversions without needing to directly program the

SERENEDI system. Here, a pipeline specifically means

a business process associated with both a SCORE script and one or more triggers in the automation system. Generally,

SCORE scripts have code to “bootstrap” the environment – that is, to set up the folders and triggers.

After SERENEDI is set up but prior to the background SERENEDIService being activated, there is only a single SCORE Script

named Pipeline.ps1 in the Pipeline folder, as the bootstrap sequence has not been executed yet. Once the service is started,

the SCORE script will run the bootstrap sub-module and create a number of both folders and triggers. All execution flow

goes into that same Pipeline.ps1 SCORE script, but different parameters are used to execute the various triggers.

In most cases, actually using the pipelines is pretty simple – just drop new files into the incoming folder for each pipeline.

The action of moving the file from the in folder to the out folder “unlocks” the file and gets it ready to be processed. If

there is a critical integrity error in the file, the source file is moved from the 02_done folder to the 04_err folder.

QUICK START

To quickly demo the functionality of SERENEDI, you can execute the following steps. First, from a file explorer window on

the SERENEDI server, make a copy of the SERENEDI/seed folder and put the copies into the first incoming folder,

C:\serenedi\pipeline\001_Normalize\01_in_edi (base folder depends on the installation option). Then, move the 14 files

that result from this operation, that are generated in the 03_out_edi folder, into the in folder of the next pipeline in

sequence. Skip Pipeline 006 and drop the results of the out folder from Pipeline 005 directly to the in folder for Pipeline

007. Wait one minute for the data to be completely finalized in the BIN system.

Then, open the user interface from the local server via http://127.0.0.1:5000 (default install option), go to the Endpoints

screen, select the left menu bar, and then enter the following in the AD-HOC SQL window:

INSERT INTO BIZ_EVENT (BIZ_TRIGGER_ID, EVENT_DATA1, EVENT_DATA3) SELECT (SELECT BIZ_TRIGGER_ID FROM
BIZ_TRIGGER WHERE TRIGGER_NAME = ‘PIPE008_BINToEDI’), BIN_ID, ‘PIPE008_BINToEDI’ FROM BIN_LOG WHERE
BIN_STATUS = ‘COMPLETE’ AND BIN_TYPE = 102

The above actions will convert all seed files to CSV files, and then back to EDI files; convert the results to XML files, and

then back to EDI files; convert the results of that operation to the HDB BIN system; and finally, pull the HDB data back into

We have a 48 minute training video explaining the Pipelines:

 Visit https://youtu.be/nCNAZAd03tg

http://127.0.0.1:5000/
https://youtu.be/nCNAZAd03tg

P a g e | 30

EDI files, completing a tour of all of the supported projection operations of the engine. As long as the original files are

HIPAA compliant, they should still be the same size and content as the files resulting from the first Normalize operation.

Pipeline 001: Normalize

Pipeline Type Purpose

001: Normalize Upload Reformat incoming EDI files so that they have consistent separator
characters and line feeds between segments.

Initial: \serenedi\pipeline\001_Normalize\01_in_edi

Finished:\serenedi\pipeline\001_Normalize\02_done_edi

Output: \serenedi\pipeline\001_Normalize\03_out_edi

Error: \serenedi\pipeline\001_Normalize\04_err_edi

Parameters:

EVENT_DATA1: full path to filename of the EDI file

EVENT_DATA3: PIPE001_NORMALIZE

This pipeline decodes and then immediately re-encodes an EDI file. It will set all segment and element terminators to

default values, and add a carriage return and line feed after every segment. Any syntactically invalid elements that do not

pose a critical error will be discarded – for example, a qualifier/identifier pair where either the qualifier or the identifier is

missing. This “normalizing” process is useful to ensure a set of files have homogenous formatting and can be easily read

in a text editor.

Pipeline 002: CSVFromEDI

Pipeline Type Purpose

002: CSVFromEDI Upload Convert incoming EDI files to CSV format.

Initial: \serenedi\pipeline\002_CSVFromEDI\01_in_edi

Finished:\serenedi\pipeline\002_CSVFromEDI\02_done_edi

Output: \serenedi\pipeline\002_CSVFromEDI\03_out_csv

Error: \serenedi\pipeline\002_CSVFromEDI\04_err_edi

Parameters:

EVENT_DATA1: full path to filename of the EDI file

EVENT_DATA3: PIPE002_EDIToCSV

This pipeline converts incoming EDI files to a CGIF2-formatted CSV file. The resulting file will enclose all values within

quotes and have a header row containing the column names. The first column name will be prefixed by the specification

tag. The destination filename will be the same as the source filename, except with a .CSV extension.

P a g e | 31

Pipeline 003: CSVToEDI

Pipeline Type Purpose

003: CSVToEDI Upload Convert incoming CGIF2 flat-formatted CSV files to EDI.

Initial: \serenedi\pipeline\003_CSVToEDI\01_in_csv

Finished:\serenedi\pipeline\003_CSVToEDI\02_done_csv

Output: \serenedi\pipeline\003_CSVToEDI\03_out_edi

Error: \serenedi\pipeline\003_CSVToEDI\04_err_csv

Parameters:

EVENT_DATA1: full path to filename of the CSV file

EVENT_DATA3: PIPE003_CSVToEDI

This pipeline executes the reverse of the 002 pipeline, converting a CGIF2-formatted CSV file back to EDI. If the file cannot

be successfully converted to EDI, it will be placed in the 04_err folder. The EDI file will inherit the same filename as the CSV

file, except with a .txt extension.

Pipeline 004: XMLFromEDI

Pipeline Type Purpose

004: XMLFromEDI Upload Convert incoming EDI files to CGIF2-formatted XML files.

Initial: \serenedi\pipeline\004_XMLFromEDI\01_in_edi

Finished:\serenedi\pipeline\004_XMLFromEDI\02_done_edi

Output: \serenedi\pipeline\004_XMLFromEDI\03_out_xml

Error: \serenedi\pipeline\004_XMLFromEDI\04_err_edi

Parameters:

EVENT_DATA1: full path to filename of the EDI file

EVENT_DATA3: PIPE004_XMLFromEDI

This pipeline projects incoming EDI files into CGIF2-formatted XML files. The files generated will begin like this:

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>

<CGIFXML3Root_U0 xml:space=”preserve”>

… edi data...

</CGIFXML3Root_U0>

The U0 will be replaced with the actual specification tag for this file.

P a g e | 32

Pipeline 005: XMLToEDI

Pipeline Type Purpose

005: XMLToEDI Upload Convert incoming XML files to EDI.

Initial: \serenedi\pipeline\005_XMLToEDI\01_in_xml

Finished:\serenedi\pipeline\005_XMLToEDI\02_done_xml

Output: \serenedi\pipeline\005_XMLToEDI\03_out_edi

Error: \serenedi\pipeline\005_XMLToEDI\04_err_xml

Parameters:

EVENT_DATA1: full path to filename of the XML file

EVENT_DATA3: PIPE005_XMLToEDI

This pipeline converts incoming XML files to EDI. If the file does not adhere to the CGIF XML rules, then the conversion will

fail and the XML file will be placed in the 04_err folder. The filename will be the same as the source XML except with a .txt

suffix.

Pipeline 006: EDIToBIN

Pipeline Type Purpose

006: EDIToBIN Upload Load an incoming EDI file to the Flat BIN system.

Initial: \serenedi\pipeline\006_EDIToBIN\01_in_edi

Finished:\serenedi\pipeline\006_EDIToBIN\02_done_edi

Error: \serenedi\pipeline\006_EDIToBIN\03_err_edi

Parameters:

EVENT_DATA1: full path to filename of the EDI file

EVENT_DATA3: PIPE006_EDIToBIN

This pipeline ingests files into the Flat BIN system built into SERENEDI. If the BIN table does not exist, it will be created. If

the table exists but certain mapped fields are not present, the fields will be added. The EDI file will be assigned a unique

BIN_ID defined in the BIN_LOG table.

The default table name is BIN_5010_<specification short name> (example: BIN_5010_837P)

This pipeline is geared toward ingesting large amounts of data into the BIN system, so it doesn’t wait for the data to go

into the destination tables – instead, it places the data into a marked temporary table and immediately exits. To see if the

data for this event is finalized in the BIN system, you’ll need to look up the BIZ_EVENT_ID in the BIN_LOG table and see if

the BIN_STATUS is COMPLETE. When that occurs, the data is available in the destination BIN table, which is listed in the

BIN_TABLE field.

P a g e | 33

Pipeline 007: EDIToHDB

Pipeline Type Purpose

007: EDIToHDB Upload Loads an incoming EDI file to the HDB BIN system.

Initial: \serenedi\pipeline\007_EDIToHDB\01_in_edi

Output: \serenedi\pipeline\007_EDIToHDB\02_done_edi

Error: \serenedi\pipeline\007_EDIToHDB\03_err_edi

Parameters:

EVENT_DATA1: full path to filename of the EDI file

EVENT_DATA3: PIPE007_EDIToHDB

This pipeline ingests files into the HDB BIN system built into SERENEDI. The HDB stores data hierarchically, with one table

present for each loop and all tables joined by keys.

The default table names are HDB_5010_<specification short name>_<loop short name>

For example, the seed 834 file will decode to the following tables:

HDB_5010_834_ISA

HDB_5010_834_GSHDR

HDB_5010_834_STHDR

HDB_5010_834_L1000A

HDB_5010_834_L1000B

HDB_5010_834_L2000

HDB_5010_834_L2100A

HDB_5010_834_L2300

These tables will be prefixed by two to four fields, depending on the situation. For ISA tables, only the BIN_ID and BIN_IX

(BIN Index) fields are used. For all other tables, a PAR_BIN_IX relates that loop to its parent loop table. For L2300 tables

for 837 Institutional and 837 Professional specifications only, an optional PAR_2000C_IX field also relates claims to a

specific 2000C patient loop.

Similar to what was described in the previous pipeline for the Flat BIN system, this pipeline will place data into a number

of temp tables before actually populating the destination tables. Once all the temp table data has been migrated to the

destination tables by the background data shuttle process, the BIN_LOG entry for this file will be changed to COMPLETE.

Pipeline 008: BINToEDI

Pipeline Type Purpose

008: BINToEDI Upload Retrieves EDI data from either the Flat or HDB system identified by
the BIN_ID and encodes it to an EDI file to the filesystem.

Output: \serenedi\pipeline\008_BinToEDI\01_out_edi

Parameters:

EVENT_DATA1: BIN_ID of the file to pull from the BIN system, or a SELECT or EXEC SQL
statement for a dynamically generated FLAT-formatted extract

EVENT_DATA2: OPTIONAL: full path and filename of the EDI file to create

EVENT_DATA3: PIPE008_BINToEDI

P a g e | 34

This pipeline will pull data from a completed Flat BIN or HDB BIN and create a new EDI file. By default, the filename will

follow the BIN_FILENAME listed in the BIN_LOG table and be placed in the 01_out_edi folder. This can be overridden by

placing a fully pathed filename in EVENT_DATA2. Files that are encoded in either the Flat BIN or HDB BIN can be extracted

with this pipeline.

Here’s an example of the SQL you would need to execute to generate a single file that was previously decoded to the BIN

system:

INSERT INTO BIZ_EVENT(BIZ_TRIGGER_ID, EVENT_DATA1,EVENT_DATA3) SELECT
BIZ_TRIGGER_ID,<<BIN ID>>,’PIPE008_BINToEDI’ FROM BIZ_TRIGGER WHERE
TRIGGER_NAME=’PIPE008_BINToEDI’

To supply a name and location for this file and override the defaults, it should be supplied in EVENT_DATA2 as follows:

INSERT INTO BIZ_EVENT(BIZ_TRIGGER_ID, EVENT_DATA1, EVENT_DATA2, EVENT_DATA3) SELECT
BIZ_TRIGGER_ID,<<BIN ID>>,’c:\SERENEDI\OUTPUT.TXT’, ’PIPE008_BINToEDI’ FROM
BIZ_TRIGGER WHERE TRIGGER_NAME=’PIPE008_BINToEDI’

If a non-numeric value is supplied in EVENT_DATA1, this pipeline will assume it is dynamic SQL tied to the distribution

database. Here’s an example of regenerating the seed_837p.txt file from the sample data built into the system:

INSERT INTO BIZ_EVENT(BIZ_TRIGGER_ID, EVENT_DATA1, EVENT_DATA2, EVENT_DATA3) SELECT
BIZ_TRIGGER_ID,’EXEC USP_837P_EXTRACT’,’c:\SERENEDI\SEED_837P.TXT’, ’PIPE008_BINToEDI’
FROM BIZ_TRIGGER WHERE TRIGGER_NAME=’PIPE008_BINToEDI’

Pipeline 009: Integrity

Pipeline Type Purpose

009: Integrity Upload Decodes an EDI file with all integrity and codeset checks enabled.

Initial: \serenedi\pipeline\009_Integrity\01_in_edi

Finished:\serenedi\pipeline\009_Integrity\02_done_edi

Output: \serenedi\pipeline\009_Integrity\03_integ_html

Error: \serenedi\pipeline\009_Integrity\04_err_edi

Parameters:

EVENT_DATA1: filename of the EDI file to check

EVENT_DATA3: PIPE009_INTEG

This pipeline decodes an incoming EDI file with full code-set checks, and then executes the Integrity Rules Engine to

perform a deeper rule validation on the file. This pipeline is currently supported only for specifications 834, 835, 837 P,

and 837 I.

P a g e | 35

Pipeline 010: Event

Pipeline Type Purpose

010: Event Upload Creates an event based off of an XML file, then writes messages to
an output XML file sharing the same filename with a .result suffix.

Initial: \serenedi\pipeline\010_Event\01_in_xml

Finished:\serenedi\pipeline\010_Event\02_done_xml

Output: \serenedi\pipeline\010_Event\03_msg_xml

Error: \serenedi\pipeline\010_Event\04_err_xml

Parameters:

EVENT_DATA1: filename of the XML file containing EVENT information

EVENT_DATA3: PIPE010_EVENT

This pipeline allows you to create a new event in the automation system using a specially crafted XML file. It will parse out

the arguments of the XML file, insert them into the automation system, wait for completion, and then output the messages

generated by that workflow in the 03_msg_xml folder. The message result file bears the original filename with a .result

suffix added to the filename.

Pipeline 011: 275C Decode

Pipeline Type Purpose

011: 275C Decode Upload This pipeline’s purpose is to decode a 5010 275C file that stores a
MIME-encoded .PNG image file, and split it into two files: an XML
that stores the EDI information, and a PNG image file.

Initial: \serenedi\pipeline\011_275C_DECODE\01_in_edi

Finished:\serenedi\pipeline\011_275C_DECODE\02_done_edi

Output: \serenedi\pipeline\011_275C_DECODE\03_out_bin

Parameters:

EVENT_DATA1: filename of the 275C EDI file

This pipeline is meant to be a starting point for developing your own business processes involving decoding 275C Patient

Information files. Specifically, it will extract the embedded MIME embedded binary file as a separate output.

 The pipeline script executes the following actions:

1. Decode the EDI and translate it to the internal SERENEDI Flat register

2. Convert the Flat register into a .NET Datatable object

3. Extract the original MIME filename and push it out as a message (to the BIZ_MSG table), prefixed by “Original

MIME filename: “

4. Store the binary attachment to the 03_out_bin folder, using the original EDI filename but with a PNG extension

5. Remove the MIME fields, translate the EDI to XML and store the XML file in the 03_out_bin, using the original

filename but with an XML extension

P a g e | 36

Pipeline 012: 275C Encode

Pipeline Type Purpose

012: 275C Encode Upload This pipeline’s purpose is to encode a 5010 275C SERENEDI XML
encoded file along with a provided PNG file, and output a single EDI
file in the output folder

Initial: \serenedi\pipeline\012_275C_ENCODE\01_in_xml

Finished:\serenedi\pipeline\012_275C_ENCODE\02_done_xml

Output: \serenedi\pipeline\012_275C_ENCODE\03_out_edi

Parameters:

EVENT_DATA1: filename of the 275C XML file

This pipeline is meant to be a starting point for developing your own business processes for creating outbound 275C Patient

Information files, and enables you to encode arbitrary PNG image files as embedded MIME encoded binaries within the

EDI file. The PNG file should be placed in the 02_done_xml folder prior to a 275C XML file being placed in the 01_in_xml

folder, and it should share the same base filename as the XML file. Furthermore, the XML file should not have any MIME

fields – if they exist, they will be overwritten. The workflow executes the following steps:

1. Convert the 275C SERENEDI-mapped XML file into an internal SERENEDI Flat register

2. Read in the PNG file from disk and set the internal maps for MIME Type, MIME Disposition, and MIME Attachment

fields.

3. Convert the Flat register to an EDI file, then store it in the outgoing 03_out_edi folder, removing the .xml extension

in the outgoing filename.

Pipeline: SFTP_MIRROR

Pipeline Type Purpose

SFTP_MIRROR SQL Provide file mirroring for all triggers linked to a SecureFTP session.

This is an SQL-triggered pipeline that periodically mirrors the local and remote file systems for triggers that are tied to a

SecureFTP session. This mirroring operation can be tested with the SERENEDI Studio GUI under the SFTP Session menu

bar.

It works by actively scanning the BIZ_TRIGGER table for passive, enabled triggers that are linked to a SecureFTP session.

These SFTP mirror triggers need to have the local synchronization directory in the FORCE_ARG3 field, and the remote

synchronization directory in the FORCE_ARG4 field. The LAST_POLL_DT and POLL_INTERVAL are used by this pipeline to

control the polling of these SecureFTP directories. The actual direction of the synchronization is controlled by the SFTP

session itself.

Since SFTP operations can take a minute or more, it’s best to set the POLL_INTERVAL on the SFTP triggers to 900 or more

(15+ minutes) so the remote SecureFTP server is not bombarded by refresh requests.

P a g e | 37

SERENEDI Studio
SERENEDI Studio is the graphical user interface for SERENEDI. It fulfills a number of requirements:

- Test the validity of EDI files and transformations

- Provide an interactive interface for testing and learning about the various registers and projections

- Show the SCORE scripting system in action so end users can learn how to script their own workflows

- Review and edit the automation triggers, and see recently triggered events and messages

- Examine the BIN system and what data is stored there

- Review and edit the SecureFTP sessions, and test folder mirror operations

SERENEDI Studio is accessible by default at http://localhost:5000 – this means it will only respond to browser requests

originating from the server itself. Since SERENEDI Studio gives extensive access to the local file system, this is done for

security reasons. SERENEDI Studio can be completely disabled (as shown in the installation instructions).

Like the rest of SERENEDI, SERENEDI Studio does not need external internet access to function – the server can be

completely firewalled from all internet access and it will continue to function normally.

This interface is best run at 1920 x 1080 in a web browser. It is fully tested with Chrome and the latest Microsoft Edge

browser. For best results, press the Fullscreen button to remove the various browser interface elements (F11 on Chrome

and many browsers). The server can be accessed by multiple people at once, and each session will have its own dedicated

instance of the SERENEDI engine. The triggers, endpoints, BIN system, and SFTP sessions are shared among all sessions.

Main Interface

The left side of the screen is the NavBar, used to switch between various functions of SERENEDI Studio. The two light blue

areas on the left is the Information pane and the Control pane. These give information about the current state, provides

register control buttons, and gives a small tabbed interface covering additional options. The top blue area is the RunBox,

which shows the SCORE commands generated and executed in response to all GUI activities. It also shows the results of

http://localhost:5000/

P a g e | 38

these operations. The red area is the Flat Register pane, showing the current state of the Flat register. The green area is

the SegPool Register, and the purple area is the HKey register.

SERENEDI Studio is oriented to operating on a single encode or decode operation at a time, and it functions to give you

as much information as possible about what is occurring throughout the environment. If you need to work on a different

file within the same session, you should press the RESET button so that the internal environment registers are cleared.

Alternatively, you can reload the browser, which will also reset all session information.

Control Pane

The Control pane is split into three sections: the info panel (top), the

register control buttons (middle), and a tab panel (bottom) that fulfills

various functions.

The info panel displays information about the current engine state: how

many segments are loaded into the SegPool register, whether the HKey is

loaded and with what specification of data, the number of columns and

rows loaded in the Flat register, and the number of messages in the

message log.

The register control buttons control the major conversion functions. First,

the RESET button will clear all registers and refresh all panes so the engine

can be used on another major file operation. SEG > HKEY will decode the

SegPool to the HKey register, while SEG < HKEY encodes the HKey to the

SegPool. HKEY > FLAT projects the HKEY to the Flat register, and HKEY< FLAT

projects the Flat register to the HKEY register. Non-critical errors that occur

during decoding will be shown in the SegPool pane.

The tab control flips between five tabs. The MAPS tab accompanies the Flat pane to show more detail about the currently

selected mapping and allows you to fully look up the element in the HIPAA Implementation Guides or the SERENEDI

mapping documentation. If SERENEDI can “parse” the actual value underneath the cursor – for example, an NDC code or

an ICD-10-CM diagnosis code – it will show that information in this box as well. The SEG, HKEY, and FLAT tabs control

functions related to those specific registers. The BIN tab allows loading and saving to the SERENEDI BIN system, and the

ACK tab provides functionality related to the ACK register.

SEG Interface

The SEG tab is used in conjunction with the SegPool Register pane, and enables you to load and save the contents as well

as search for keyphrases in the loaded SegPool.

To load an existing EDI file, double click area with the grey words

“SegPool to Load”. The following dialog will pop up:

P a g e | 39

The default location of all File Dialogs is the pipeline folder. Pressing the ‘..’ will ascend a

folder level, and clicking on directories will descend to that folder. You cannot ascend above

the ‘shared’ folder level within the dialog. You can select a file and press ‘OK’, or double click

the file – both will load the filename into the input box. Press ‘Select Folder’ to select the

current folder, or Cancel to exit the dialog without selecting anything.

When the SegPool is loaded, you can type a search phrase into the “Search for Text” input

box and then press the SEARCH button to search for successive occurrences of that text

within the loaded EDI File.

HKEY Interface

The HKEY tab is used in conjunction with the HKEY register pane, which

displays the EDI file in an XML format. Just like the previous tab, double-

clicking the input box will bring up a file dialog to load an existing XML file,

or allow you to select a folder. Save XML will save the loaded HKEY to an

XML file on the system, and typing in a search term and pressing SEARCH

will search through the contents of the XML file for successive occurrences

of the search term.

FLAT Interface

The FLAT tab is used in conjunction with the FLAT register pane, and

supports loading and saving the FLAT register as CSV files.

BIN Interface

The BIN tab allows you to interact with the BIN system and consists of four

buttons and two text boxes.

TriggerDB is a button that switches between different database endpoints

configured in the Endpoints interface. This allows you to send Flat or HDB

BINs to different SQL Server databases. Simply clicking the button will

advance through the list of defined endpoints. Database endpoints are

configured within the DB Endpoints interface that is available via the Navbar on the left side of the screen.

The FORCEMERGE / FORCE button is a toggle between two different modes – Force Merge and Merge. Force Merge

requests the background data shuttle process to extend the schema of the destination BIN tables for any additional

mappings that are not already present. Merge requests will not extend the schema, so additional EDI elements that are

not present in the schema will be lost. By default, all operations use the FORCEMERGE system.

The Retrieve BIN (* < DB) button works in conjunction with the BIN ID textbox below the button. If the BIN ID is populated,

then the interface will load either the Flat or HKey register, depending on if the corresponding BIN was stored as a Flat or

an HDB tableset. If these BINs are not available, a modal popup will appear instead.

P a g e | 40

The bottom Data Source textbox has multiple purposes. If it is populated with the name of a table or starts with EXEC or

SELECT, then this information can be used in conjunction with * < DB button to load the table, the contents of the stored

procedure, or the SELECT query, respectively. Alternatively, if it is populated with a table name, the FLAT > DB button will

store the FLAT register to the indicated table and create a new BIN ID entry, which is displayed in the BIN ID textbox.

If you press the HKEY > KDB button and the HKEY register is loaded, the Data Source textbox will instead provide a prefix

to storing a set of hierarchical database tables (HDB). If the textbox is empty, default names will be used.

ACK Interface

SERENEDI has the ability to automatically generate 999

Acknowledgment transactions as well as parse existing 999s. The ACK

register is similar to a SegPool register in that it stores a single 999 EDI

file. Although the SegPool can load and save 999 transactions and

therefore enable very customized scenarios, the ACK register is

provided as a simple facility to generate “Accept” or “Reject”

transactions depending on the outcome of a SegPool decode operation.

The ACK File Text Box allows you to specify the path to a 999 acknowledge file. If you double-click the text box, a file dialog

will pop up and allow you to load in a file that exists on the server file system, or to upload a file from your client file system

to the remote one. Alternatively, you can supply the name of a file that you will be generating in another step.

The Load ACK button loads the ACK register with whatever file is selected in the ACK File text box.

The Save ACK button will save the ACK register (as long as it’s loaded) to the file indicated in the ACK File text box.

The SEG > ACK button allows you to pull the SegPool register to the ACK register, so long as it is a 999 file. This lets you

create custom 999s user other parts of the environment, transfer the SegPool to the ACK register, reload a different

SegPool, and then parse the 999 against that new SegPool and verify the results.

The SEG < ACK button allows you to pull the ACK register into the SegPool register. You can then commit that 999 to the

BIN system or analyze it in the various Studio interfaces.

The Parse button will parse the 999 against the loaded SegPool register. For example, if a trading partner generates a 999

message in response to a file you sent, this operation will generate a series of messages that you could then use to analyze

why the transaction was rejected, and where.

The Generate button will take the result of the last decode operation (a SegPool to HKey projection) and automatically

generate a simple 999 transaction depending on what happened. If the decode operation was successful, it will generate

a 999 showing all the transactions as Accepted. If the decode failed, it will generate an overall Rejection 999 and show

exactly what line and segment resulted in the decode failure.

Runbox

P a g e | 41

The RunBox gives a running display of all SERENEDI Studio operations in the form of SCORE script commands. Since all the

buttons interface to the environment using these commands, it gives you a history of your activity within the interface as

well as a way to learn to execute these functions through the automation system. If any messages are generated during

the execution, they will be displayed at the bottom.

Flat Pane

The FLAT register pane displays the contents of the Flat register. Use the sliding control at the bottom to view different

columns; use the scrollbar at right to scroll through the dataset. When you click on a cell, information about both the

mapping of that cell and the data it contains is displayed in the Info Panel part of the Control Panel.

The Column Filter text box allows you to focus on a limited set of rows from the register. First, click on a mapping, then

enter a value into the Column Filter text box. This will create a filter that displays only the rows for which the column

matches the given value. Another way to do this is to double-click on any cell, and a column filter will automatically be

generated against the data stored in that cell. Whenever a column filter is added, an orange X is displayed to allow you to

remove the last column filter added. Up to three column filters can be active at one time. Adding or removing filters will

automatically regenerate the displayed data.

The mapping info pane to the left of the Flat pane displays information

about the currently selected mapping. This makes it easier to look up in

both the SERENEDI mapping documentation as well as the HIPAA

implementation guides. It displays these values:

Map – This is the CGIF V2 map this column is linked to. Following this is

the HIPAA EDI data type for this element: AN for string, N0 for number,

DT for Date/Time, TM for Time, and R for floating-point number or

money.

Value - Value. This will display both the name of the

value, and, if the value is given a defined name in either

the implementation guides or the SERENEDI-supported

code sets, that value name is given here.

Valid – This is “Y” if this is a valid SERENEDI mapping, “N”

otherwise.

LoopType - The type of the loop associated with this

mapping, as described in the SERENEDI User Manual

LoopCutout – This is “Y” if the loop is a special case “cut

out” which helps SERENEDI encode special segment data

that can repeat numerous times, such as CAS segments.

P a g e | 42

LoopNm – Name of the Loop

LoopRpt - Valid repeats of the loop

LoopReq - “Y” if the Loop is required, “N” otherwise

SegType – Segment Type

SegRpt – Allowed Segment Repetitions

SegReq – Segment Required?

SegCd – 2-3 digit Segment Code

SegNm – Segment Name

SegPos – Segment Position

XSENm – Element Name

XSEReq – Element Required?

XSEUnused – Element Unused?

SubXSE – Is this is a composite element?

EleRpt – Allowed Element Repetitions

EleMinChar – Minimum characters allowed in element

EleMaxChar – Maximum characters allowed in element

EleType – Data type of Element

SegPool Pane

The SegPool Pane displays the current state of the

SegPool register. If the SegPool is initially loaded, it

will display the line number in blue and the

segments and elements in black. If the SegPool has

been decoded, additional information about the

loop will be displayed in blue, and any integrity

errors will be displayed in red.

The pager controls at the bottom allow you to

traverse through the SegPool contents. Searching through the SegPool is performed via the Seg tab in the control group.

HKEY Pane

The HKey Pane displays the contents of the HKey

register in an XML format. Searching through the

XML document is performed in the HKEY control

tab, and traversing through the contents of the file

is performed via the paging controls at bottom.

P a g e | 43

Triggers/Events Interface

The Triggers/Events interface provides a window into the automation system and all the triggers, events, and messages.

Triggers can be added, edited, and deleted, and you can view recent events as well as the messages generated during an

event. This section is not meant to provide the full workings of the trigger and automation systems – instead, it defines all

the controls that you as a user can manipulate, and the technical section on the automation system will go more deeply

into the actual functioning of the trigger system.

The Triggers pane in the upper left (outlined in orange) is a view of all triggers defined in the automation system. Clicking

on a trigger here will highlight it and the data for that trigger will be displayed in the Trigger Detail pane, outlined in blue.

Events that have been fired by that trigger – sorted in time-descending order – are listed in the Events pane, outlined in

green. Clicking on a specific event will display more detail about that event in the Detail pane, outlined in gray, and any

messages that occurred during that event will be displayed below in the Event Messages pane.

Triggers

The Triggers pane allows you to view all the triggers defined in the automation system (the BIZ_TRIGGER) table. Click on a

trigger to bring up the trigger editor on the right. Triggers can be sorted by ID, name, and type by clicking on the row

header.

Trigger Detail

P a g e | 44

The SERENEDI automation system is highly versatile, enabling a rich set of criteria used in creating events. The Trigger

Detail pane exposes these criteria to you via this interface.

The top row starts with the Button Bar – this control gives you the option to commit changes, add a new trigger, or delete

a trigger. Triggers cannot be deleted if there are any associated events in the BIZ_EVENT table – which in turn cannot be

removed if there are associated BIN_LOG or BIZ_MSG entries. To create a new trigger, first press the + button on the left

of the update bar, enter the information pertaining to the trigger, and then press UPDATE. This will commit the new

trigger’s information to the environment, although you will have to re-select it in the Trigger interface to make further

edits. Once you do, just click the Update button again, and they will be committed to the distribution database.

To make changes to the triggers, you can adjust the options presented on-screen, but they will not go into immediate

effect. Any changes you make will only be on “in-memory” copies of the triggers, and the changes will not be committed

to the database until you press the Update button.

To delete a trigger, it must not have any related BIZ_EVENT entries – these must be deleted (along with messages in the

BIZ_MSG table) before the trigger can be removed. The first time you click the - button, a modal dialog will pop up

informing you that you must press it a second time before the trigger can be deleted.

Button bars are used throughout the SERENEDI Studio interface, and they all work the same way.

The Trigger Name field allows you to provide a name for the trigger. The Enabled checkbox controls whether the trigger is

active or not – the automation system will completely ignore disabled triggers for the purposes of generating new events.

Next to this is the Trigger Type pulldown menu. It contains the following options:

PASSIVE – Passive triggers do not themselves generate events, but do allow events generated from other sources to execute

the SCORE script associated with this trigger.

SQL – SQL triggers execute queries periodically and fire triggers when the SQL evaluation equals to an integer value of 1.

LOCAL_UPLOAD – This trigger type will fire events based on files it is able to pull from the Initial Directory to the Source

Directory.

LOCAL_ARCHIVE – This trigger type will fire events based on files that exist in the Initial Directory that have not been

processed by an event before.

The SCORE Script textbox provides a location for the SCORE Script that is executed by this trigger. Instead of providing the

full path, you can provide a single $ symbol to represent the full path to the pipeline directory within the environment.

The second line in the Trigger window is labeled INIT DIR. This text box is where you supply the Initial Directory that works

in conjunction with Local Upload and Local Archive trigger types. Afterward, the SRC DIR is where you can supply the

Source Directory for LOCAL_UPLOAD triggers.

The third line allows you to supply a Secure FTP session linked with this trigger. Triggers with linked SFTP sessions are

special-purpose designed to mirror remote and local directories. This can only be set if there are already SFTP sessions

defined. Triggers with defined SFTP Sessions can generate events on newly downloaded files from a remote SecureFTP if

they are set to LOCAL_ARCHIVE. To clear an SFTP session once it’s been set, press the ‘X’ button and then the UPDATE

button to save changes to the trigger.

P a g e | 45

After this is a date/time stamp of when the trigger was last fired. Then there is a numeric text box for the Polling Interval,

which indicates the number of seconds between polling of the trigger conditions. It’s followed by the Max Workers textbox,

which allows you to set limits on the number of worker processes SERENEDI will commit to this trigger’s events at any one

time.

The fourth line defined ARG 1, ARG 2, ARG 3, and ARG 4. These represent pre-defined values that automatically populate

into event data when this trigger is fired.

Below the main body of the Trigger definition is a tab control that regulates the auxiliary behavior of the trigger.

The SQL Tab is used in conjunction with SQL triggers. The above example shows the SQL used to trigger the SFTP_POLL

pipeline that runs mirror operations on triggers with the SFTP session set, and is due for a poll operation.

The Timestamp Tab is used in conjunction with LOCAL_UPLOAD triggers and allows you to set timestamps within the files

as they are moved from the Initial Directory to the Source Directory. This is useful if you have a trading partner that sends

files with a fixed name and you need to differentiate it from the other files using a timestamp. It is a .NET date/time format

string that will add a custom suffix to the filename according to the format string. For example, placing

‘yyyyMMddHHmmss’ will rename incoming files to have a suffix of 20231211135510 (on Dec 11th, 2023, 1:55:10 PM).

The Filter Tab sets file filters for UPLOAD and ARCHIVE triggers. Regular text characters can be used in addition to ? and *

wildcard characters; the file-based triggers will only trigger if incoming files match the criteria. If two filters are provided,

the trigger only files if files fulfilling both criteria are present. For UPLOAD triggers, only the file matching the first criteria

is moved, and in all triggers, the file matching the first filter is generated as an event. For example, if the filters HDR_*.txt

and DTL_*.txt are provided, an event will be generated on the HDR_20231211.txt file so long as there is also another file

in the same folder with the name DTL_20231211.txt – but only the HDR file will be moved.

The X button allows you to delete the last filter defined, and the + button allows you to define a new file filter.

P a g e | 46

Events

This shows the most recent 5,000 events in the automation system.

The bottom represents the pager to switch through multiple pages of

events. Selecting an event row will bring up the detail in the Event

Detail pane, and also any messages associated with this event in the

Event Messages pane.

Event Detail

This pane shows all the details associated with a specific event,

including all parameters, summary information, the times it was

started and completed, and when the event was actually generated.

Event Messages

This pane shows the messages associated with an event

in numerical order.

P a g e | 47

SFTP Interface

SERENEDI incorporates a number of SFTP commands into the SCORE scripting language, and also provides a way to enable

local and remote directory mirroring by using special SFTP mirroring triggers. The SFTP Pipeline automatically polls these

SFTP triggers that are linked to SFTP sessions. This interface allows you to test the SFTP sessions directly, set options for

logging and mirroring, and test various operations.

The SFTP Sessions pane outlined in green is a list of all defined SFTP sessions. After you select one of the sessions, its

details are set in the SFTP Session Detail pane. Below this, outlined in brown, are the Local File System and Remote File

System panes.

SFTP Sessions

This pane will simply list the SFTP Session ID, the host name, and the user for the session. Sorting by these fields can be

done normally by clicking on the column headers.

SFTP Session Detail

At the top is the Button Bar control that handles creating new SFTP sessions, updating existing sessions, and deleting

existing sessions. To create a new session, click +, enter the information for the session, then click Update. Changes to the

session will not be committed to the database until the Update button is clicked. Likewise, to delete a session, you must

click the - button twice.

Below this is the Host Name text box. You may use an IP address or a fully qualified host name. Below that is the User

Name and Password that will be used to log into the specified SFTP server. Alongside these text boxes, the Log Dir will

enable you to provide a directory to place logging files. The SFTP Port enables you to provide an override for the SFTP port

for connections.

P a g e | 48

Below that is the Fingerprint, used to validate the SFTP server’s identity. Initially it is set to a null value, and it will be set

on the first operation or Update operation. If the server changes for any reason, you will need to press the RESET

Fingerprint button to clear it again, or the server session will not connect.

Below this are options to force Binary and ASCII file transfers. The Private Key File will reference a file on the local system

that stores the public and private keys used for the session, and the Passphrase provides a way to unlock the Private Key

file if it is locked.

The Local Mirror checkbox will direct the SFTP session to download new files from the remote server to the local file

system. The Remote Mirror checkbox will direct the SFTP session to upload new files from the local file system to the

remote server. The File Move checkbox directs the SFTP session to delete the file from the local or remote file system once

the file has been downloaded or uploaded.

The Test Synchronize button will execute a mirror operation using the Local File System and Remote File System values.

Local File System / Remote File System

These two panes allow you to experiment with uploading and downloading files, viewing the files on the remote server,

and set things up so you can click the Test Synchronize button to see how the mirror operation functions with the

parameters set for this session. Initially, you’ll need to click the Refresh button to get the active directory on both the

local and remote file systems. Click on the directory folders to move to different locations. You can also change the path

directly in the Local Path / Remote Path text boxes and click Refresh to go immediately to a specific directory in the local

or remote file systems.

BIN Interface

The BIN interface provides a window into the BIN system, which stores two types of information: HDB and Flat

representations of EDI files. Both of these data types are stored in human-accessible SQL tables, and when used in

conjunction with DB Endpoints, can be stored on other databases.

P a g e | 49

The BIN LOG Events window displays the BIN_ID, Event ID, source filename, destination table name and type. Nothing is

displayed until you press the ‘1000’, ‘5000’, or ‘All Rows’ button to filter the selection. Afterwards, clicking on an individual

row will yield more information about the BIN Log entry at the bottom.

Endpoints Interface

The Endpoints interface enables you to create, update and and delete database endpoint connections. If you’d like to send

BIN table data to databases other than the serenediCore distribution database, you must define the connection here first.

Endpoints

The Endpoints pane outlined in green in the upper left is a list of all defined endpoints. Clicking on the column headers

allows you to sort the results. Clicking on a database endpoint will bring up its information in the Endpoint Detail pane on

the right.

Endpoint Detail

The orange-outlined Endpoint Detail pane gives you the ability to create, update, and delete database endpoints and set

the connection string and database type for the endpoint. The + button will create a blank endpoint in the window, but

will not actually commit it to the environment until you enter the information and press the Update button. To make a

change to the endpoint, highlight it, make the change, and then click Update. To delete an endpoint, the delete button, -,

needs to be hit twice to prevent accidental erasures. Note that there should not be any data associated in the BIN_LOG

table, or this operation will fail.

P a g e | 50

Chiapas Gate Intermediate Format, Version 2

INTRODUCTION

A lot of the learning curve of using SERENEDI involves understanding how the integration platform maps EDI transaction

elements to database elements. This process is just as complex as the hierarchical HIPAA implementation guides

themselves.

Before going into detail about the CGIF2 mapping naming conventions, it’s important to note the underlying business

objectives behind this system. HIPAA-compliant EDI transactions are laid out in a completely hierarchical fashion – starting

with outer envelope segments such as ISA, GS, and ST, then wrapping up with the closure envelope segments of SE, GE,

and IEA. Within this structure, data is arranged in loops, segments, and elements. A loop is an aggregate of segments,

whereas a segment is a collection of elements. Elements and composite elements are generally tied to specific business

items such as claim numbers, last names, and the many thousands of other items that are discretely identified within the

HIPAA implementation guides. These elements are surrounded by well-defined scaffolding segments that positions the

data elements correctly within the hierarchy.

SERENEDI’s architecture and CGIF2 mapping system are oriented to enable end-users to focus as much as possible on the

business information contained within the transaction and ignore the scaffolding that contains it. At the same time, this

mapping system needs to completely encapsulate every element within a transaction. Because the HIGs themselves can

sometimes allow for a deeply complex nesting of iterated loops and segments, the mapping system must account for every

single possibility.

One thing to note is that the CGIF2 mappings completely define the contents of an EDI file. The SERENEDI engine is solely

programmed through the presence and contents of these mappings. It differs from many EDI packages that contain XML

schemas and enable end-users to alter them to fit a particular business scenario. Because the mapping system is tightly

integrated to the specifications, it does not allow for “custom” segments or departures from the HIPAA implementation

guides.

Therefore, the simplest way to define CGIF2 is as a way of encapsulating all the complexity of locating a single data element

within the HIPAA implementation guide and projecting it into a two-dimensional space. In this way, the hierarchy’s many

complexities are “unrolled” and flattened to a two-dimensional table, as that is the natural data structure for an enterprise

system: a relational database. Since this format rigidly follows all the complexities of the HIGs, then it must stand to reason

that any valid HIPAA EDI transaction can be projected into a flat database table. Following this, it stands to reason that to

create a new HIPAA EDI transaction, the user must generate a SQL data table that stages the data exactly as if the file were

freshly decoded in SERENEDI, with field names that strongly adhere to the CGIF2 conventions.

In order to make this mapping convention work, SERENEDI categorizes all the loops into a number of specific categories.

As defined within the HIGs, loops often have specific relationships with other loops, and these relationships have to be a

part of the mapping methodology in order to pinpoint an element’s exact location within the hierarchy.

The following sections explain how SERENEDI maps elements and binds them to the hierarchy. All these maps are provided

in the HTML files inside of the serenedi/docs/specs directory. As per the 5010_837I.html file:

Want a 37-minute training course on mapping with SERENEDI?

 Visit https://www.youtube.com/watch?v=BjoT9J3O4jE

https://www.youtube.com/watch?v=BjoT9J3O4jE

P a g e | 51

The specification code and type are found at the top of the file and are part of the filename. The loop short and long names

are listed in bold here. Below that, you will find a list of segments and the actual maps. The Element Index is the first

column. If there is a composite element index, it will be listed in the second column in red. The actual map is the third

column. In some cases, you’ll see different-colored characters within the map itself, indicates variation according to the

situation. In the above example, the loop is categorized as a Single Iteration, which means that the Other Subscriber

Information can repeat a certain number of times. The green xx identifies the number of the iteration, starting at 01. This

01 is carried into all child loop maps, which is how all the information in those maps is related together with this specific

iteration of the 2320 loop.

CGIF3 Loop Types

STANDARD – This loop can iterate one time or many times, and has no special relationship with the parent or child loops.

It’s the designation for all loops within a specification’s main data encoding branch, the set of parent/child loops encoding

the information that is the general purpose of the transaction.

SINGLE ITERATION – This loop is defined in the HIG as not being within the main data encoding branch and having a specific

number of repeats. In general, these loops encode auxiliary information. A good example is Loop 2320 in both the 837

Institutional and 837 Professional implementation guides, which establishes Coordination of Benefits information

associated with a claim. These loops can repeat up to 10 times to relay information for 10 different COB providers. Every

mapping in a Single Iteration loop must contain a number that indicates a specific iteration of this loop.

INHERITED ITERATION – This loop is a child of the Single Iteration loop described above. Every mapping for this loop has

to inherit the iteration of the parent loop. An example of this is the 837 Institutional loop 2330D, Other Payer Operating

Physician.

INHERITED ITERATION & VALUE – This loop is just like the Inherited Iteration loop type described above, but with the

added twist of multiple qualifiers present within the header segment. One example is Loop 2330C in the 837 Professional

HIG. This loop iterates along with the parent 2320 loop, but also with the qualifier present in the NM1 segment,

determining whether that loop represents a COB Referring Provider or a COB Primary Care Provider.

QUALIFIED VALUE – This represents a loop that contains multiple qualifiers in the header segment that change the

information composition of all mappings within that loop. Generally, the first element in the first segment determines the

most pertinent information about the loop. One example is the 837 P 2420F loop, Referring Provider. Each of the two

possible iterations can encode information about either a Referring Provider or a Primary Care Provider.

P a g e | 52

INHERITED VALUE – If a Qualified Value loop has child loops, they inherit the value of the parent loop within the mapping.

This only occurs in a few instances, but one example is the Transmission Receipt Control Identifier loop 2200A, which is a

child of the 2100A Information Source Name loop within the 277CA specification.

Element Mapping

Elements in SERENEDI have four discrete data types: String, Integer, Floating Point, and Date/Time. For maps that involve

date ranges (which are prefixed by an RD8 qualifier), there are actually two mappings that correspond to the beginning

and ending date range, which are suffixed with RD8_1 and RD8_2. These data types are especially important when working

with database tables, as they reflect how the cells are stored and queried.

Element maps have the following components: the Segment Code and Element Abbreviation or Qualifier are always

required; the other components may or may not be present, depending on the mapping.

Segment
Iteration

Segment
Code

Segment
Suffix

Element
Index

Composite
Element

Index

Element
Repeat
Index

Element
Abbreviation
or Qualifier

Segment Iteration (OPTIONAL)

For segments with a fixed number of repetitions, the maps enable binding to a specific segment iteration by prefixing it

with a two-digit number. This number is at least 02 or above – the first iteration of any segment does not need any prefix.

Segment Code (MANDATORY)

This is the two- to three-digit code of the segment itself, like REF or CLM.

Segment Suffix (OPTIONAL)

Sometimes the combination of Element Abbreviation and Segment Code is not sufficient to uniquely identify a segment,

especially when the specification calls for a run of segments describing closely aligned information, like in the 837 guides

with HI segments. For these cases, a single character suffix is added to the segment.

Element Index (OPTIONAL)

This is a two-digit index referring to the exact element of the map. It occurs for most mappings, but may be omitted for

segments that do not convey many mappings, such as DTP and REF segments.

Composite Element Index (OPTIONAL)

This is a two-digit index referring to the index within a composite element.

Element Repeat Index (OPTIONAL)

In a few elements among the many in the HIG, sometimes an element is able to repeat. For example, the composite race

or ethnicity information element in the 834 DMG04 can repeat 10 times, separated by the element repeat character

specified in the outer ISA segment. In this mapping system, an E followed by a two-digit number allows these elements to

be mapped.

Element Abbreviation or Qualifier (MANDATORY)

P a g e | 53

This specifies additional information about the element being mapped and is usually a compressed shorthand for the

element’s Implementation Name given in the HIGs. If the element is the identifier of a qualifier/identifier pair (where both

elements are listed in the HIG as REQUIRED), then this abbreviation will relate to one of the qualifiers in the preceding

element. For these cases, it means that a single mapping is bound to two elements, both the qualifier and identifier, in the

target EDI file, and also that it is not necessary to know what the qualifier is, just what the data point represents.

Note that Date/Time elements have special suffixes that bind the information to a certain format in the EDI file. These

possible valid suffixes for every element will be provided in the associated mapping documentation, but they will be a part

of this set:

TM – Four-digit timestamp, HHMM.

TM6 – Six-digit timestamp, HHMMSS.

TM8 – Eight-digit timestamp, HHMMSScc.

DT – For six-character date fields, this will be a six-character date following YYMMDD. For all others, it will be a 12-digit

date time stamp following YYYYMMDDHHMM.

D8 – This is a normal eight-digit date, following YYYYMMDD.

RD8_1, RD8_2 – These suffixes denote the lower and higher dates of a date time span for a single element. Date Range

elements are always “split” into two columns for the lower and upper part of the date span.

ATTCHMNT – This is a special case data type for storing binary data within a 275 attachment, and only occurs there

EXAMPLES

A CGIF2 map is subdivided into three sections. The total amount of characters for each map will never exceed 30 characters.

Here are some examples of the different conventions used in CGIF2 mappings:

Example

Loop Identifier
& Qualifier

Segment/Element Map Full Mapping

1 ISA ISA02_NO_AUTH_NFO W2_ISA_ISA02_NO_AUTH_NFO

2 L2300 CLM02_TOT_CLM_CHG_AMT L2300_CLM02_TOT_CLM_CHG_AMT

3 L2320_02 CAS03_ADJ_AMT L2320_02_CAS03_ADJ_AMT

4 L2200DX STC04_TOT_CLM_CHG_AMT L2200DX_STC04_TOT_CLM_CHG_AMT

5 L2100A_IL DMG0501_E03_RAC_ETH_CD L2100A_IL_DMG0501_E03_RAC_ETH_CD

6 L2300 DTP_STMNT_RD8_2 L2300_DTP_STMNT_RD8_2

7 L2330C_02P3 REF_PVR_COMM_NR L2330C_02P3_REF_PVR_COMM_NR

8 STHDRX PLB030_PVR_ADJ_ID STHDRX_PLB030_PVR_ADJ_ID

9 L2110B BIN02_MIME_TYP

BIN02_MIME_DISP

BIN02_ATTCHMNT

L2110B_BIN02_MIME_TYP
L2110B_BIN02_MIME_DISP

L2110B_BIN02_ATTCHMNT

Example 1

W2_ISA_ISA02_NO_AUTH_NFO

P a g e | 54

If we look at the 837 Institutional HIG C.1 section on control segments, we’ll see the definition of the ISA segment, and by

the mapping conventions established above, we know that this is a map to the ISA loop, the ISA segment, Element 02. One

unusual thing is the W2 prefix, which occurs once and only once in a set of mappings, and is what tells the SERENEDI

encoding engine exactly what specification these maps belong to. This is universal to all valid sets of CGIF2 maps, that the

very first (and only the first) mapping needs to establish the specification being mapped.

The NO_AUTH_NFO element suffix is referencing the ISA Element 01 qualifier 00, “No authorization information present.”

Therefore, it maps to two discrete elements in the ISA segment, ISA01 with the qualifier set to 00, and ISA02, where the

mapped data is actually stored.

Example 2

L2300_CLM02_TOT_CLM_CHG_AMT

To see more about this mapping, we can look it up in the internal mapping documentation, located at:

C:\serenedi\docs\specs\ 5010_837I_A2.html / Loop 2300:

The data type is present in the fourth column, meaning that the information being stored in this Total Claim Charge Amount

field is floating point. In SQL Server, this is equivalent to the FLOAT(53) data type.

Example 3

L2320_02_CAS03_ADJ_AMT

This is an example of an Adjustment Amount segment.

C:/serenedi/docs/specs/5010_837I_A2.html / Loop 2320:

L2320_02_CAS03_ADJ_AMT

In the above listing, the green xx stands in for the numeric 2320 loop iteration, and the red nn is for the segment iteration

prefix, which is only present on the second iteration and above.

If it were necessary to send a second CAS segment right after the first one, the mapping would gain a segment iteration

index and look like this:

L2320_02_02CAS03_ADJ_AMT

Example 4

L2200DX_STC04_TOT_CLM_CHG_AMT

This is a 277CA map, found here:

C:/serenedi/docs/specs/5010_277CA.html / Loop 2200DX:

P a g e | 55

This is an example of a cutout. The 2200DX loop does not appear in the HIPAA implementation guides; instead, it’s a

convention of cutting out segments that have infinite repetitions so they can be mapped in a different way. Cutout maps

are mapped vertically across multiple database rows. If a cutout iterates more than once, then a new database row that

copies all data values up to the L2200D loop is presented, but with new values for the L2200DX maps. To prevent SERENEDI

from seeing the L2200D values as a new row, the mandatory field NEWROW is set to 0, which blocks out all other columns

from the data parser and focuses only on cutout mappings.

Normally, NEWROW is set to 1 and is mandatory on every CGIF2 Flat, even for specifications that lack cutout loops. When

NEWROW is 1, then the data parser is guaranteed to emit a new row for the deepest Standard loop present in the data

row. When NEWROW is 0, then all other mapped values are ignored and only the cutouts are focused on. The other values

may be present, especially in SQL Views, to maintain the sequence in properly sorted order, but the parser will scan each

row for non-null values in cutout mappings.

Here’s an example of how this works:

L2200DX_STC04_TOT_CLM_CHG_AMT NEWROW

100.00 1

110.00 0

120.00 0

130.00 0

Note, that it may give rise to a question: what if there are multiple cutouts at multiple levels? The data is presented in the

same way, and the parser will intelligently restructure the database output and link them into the correct places in the EDI

hierarchy. For example, earlier in the hierarchy is the loop 2200C and the associated cutout, 2200CX. This gives an example

of how multiple levels of cutouts are presented and encoded in the

destination EDI.

L2200CX_STC04_TOT_SBR_CHG_WRK L2200DX_STC04_TOT_CLM_CHG_AMT NEWROW

210.00 100.00 1

250.00 110.00 0

 120.00 0

 130.00 0

Example 5

L2100A_IL_DMG0501_E03_RAC_ETH_CD

This example is drawn from the 834 Implementation Guide. The SERENEDI maps are found here:

C:\serenedi\docs\specs\5010_834_A1.html / Loop 2100A:

STC*A6:123:00*20190101*WQ*100.00~

STC*A6:123:00*20190101*WQ*110.00~

STC*A6:123:00*20190101*WQ*120.00~

STC*A6:123:00*20190101*WQ*130.00~

…

STC*A1:19*20190101*WQ*210~

STC*A1:19*20190101*U*250~

HL*4*3*PT~

NM1*QC*SMITH*JOE***MI*123456ABC~

TRN*2*JOESMITH12345~

STC*A6:123:00*20190101*WQ*100.00~

STC*A6:123:00*20190101*WQ*110.00~

STC*A6:123:00*20190101*U*120.00~

STC*A6:123:00*20190101*U*130.00~

P a g e | 56

It demonstrates a fairly complex mapping – let’s start at the top:

1. Value Qualified Loop – The red yy in the mapping guide indicates that one of the two Loop Qualifier values

should be placed here. For the 834 2100A loop, these are 70 to indicate a Corrected Insured loop, or IL to

indicate an Insured Member loop.

2. Composite Element – These values represent composite elements, which are elements defined in the HIGs that

are nested within other elements. From the parsing of the DMG0501 part of the map, this means the first

composite element within the fifth element of the DMG segment.

3. Repeated Element – Looking at the element definition for this element within the HIG, we’ll see this box:

The X 10 means that this element – meaning all of the composite elements – can repeat up to 10 times. The E03

provided in the example mapping means this map binds to the third repetition.

L2100A_IL_DMG0501_
RAC_ETH_CD

L2100A_IL_DMG0501_E02
_RAC_ETH_CD

L2100A_IL_DMG0501_E03
_RAC_ETH_C

L2100A_IL_DMG0503_
CS_RC_ETH

L2100A_IL_DMG0503_E02
_RAC_ETH_CD

L2100A_IL_DMG0503_E03
_RAC_ETH_CD

9 A 8 B 7 C

Example 6

L2300_DTP_STMNT_RD8_2

C:\serenedi\docs\specs\ 5010_837I_A2.html / Loop 2330:

This is an example of a date range map. This map will always appear as a pair, and both maps together will encode a single

element, in this way:

L2300_DTP_STMNT_RD8_1 L2300_DTP_STMNT_RD8_2
Jan. 1st, 2019 Jan. 30th, 2019

Example 7

L2330C_02P3_REF_PVR_COMM_NR

The mapping documentation is found in the 837 P mapping guide:

DMG*D8*19890809*M**9>RET>A^8>RET>B^7>RET>C~

DTP*434*RD8*20190101-20190130~

P a g e | 57

C:\serenedi\docs\specs\5010_837P_A1.html / Loop 2330C:

This is an example of the Inherited Iteration and Value Loop Type. The four digits after the loop identifier (L2330C) indicate

that this is the second loop iteration of the inherited parent loop, 2320, and that this map pertains to a Primary Care

Provider (P3 qualifier listed in the mapping guide) iteration of the 2330C loop.

Example 8

STHDRX_PLB0301_PVR_ADJ_ID

The PLB segment mappings at the end of the 5010 835 transaction are unique in that they represent a cutout that’s not in

the normal data encoding path.

To present these mappings in a Flat interface, the STHDR and parent loops should be present in the data row along with

the first PLB segment information, with NEWROW set to 1. For any subsequent iteration of the PLB segment for that

transaction, NEWROW should be 0.

Example 9

SERENEDI supports encoding binary attachments within a 275C file via the BIN and BDS segments. BIN01 is the integer

length of the binary; this is automatically populated from the actual content of the BIN02_ATTCHMNT field. If data is

supplied in the BIN02_MIME_TYP and BIN02_MIME_DISP fields, the binary supplied in the BIN02_ATTCHMNT field will be

encoded to Base64 and stored as a MIME attachment within the EDI envelope. These will be plugged into the MIME

message envelope as follows:

Content-Type: L2110B_BIN02_MIME_TYP

Content-Transfer-Encoding: base64

Content-Disposition: L2110B_BIN02_MIME_DISP

Then, the Base64 of the binary will be transmitted. For XML transports, the data is also encoded into Base64, but the

MIME envelope is not generated. The CSV transport is not supported for binary attachments. For database,

BIN02_ATTCHMNT is stored as a VARBINARY(MAX) column. If BIN02_MIME_TYP is left empty, the binary will be sent as a

normal string, and it will be up to the developers to ensure segment separators are not encoded into the string. If sending

an attachment, ALL BIN02 fields are mandatory and should be presented in the order above or else a critical error will

occur during parsing. If you are transmitting plain text in the ATTCHMNT map and not a binary file, transmit only the

BIN02_ATTCHMNT column.

P a g e | 58

ENCODING VS. DECODING

Up to now, we have covered the essentials of how SERENEDI binds mappings from database tables and cells to defined

elements within a supported EDI transaction. In this section, we will approach this problem at a higher level, and discuss

how the business requirements of creating and parsing EDI transactions relate to the bidirectional SERENEDI translation

engine.

When decoding EDI transactions, SERENEDI will create a mapping and assign values for every mapping it encounters. Note

that “mapping” here is very different from “elements” because, as we see in the above examples, a single mapping can be

half of an element, such as when encoding RD8 time spans, or it can encapsulate two elements in the EDI file, as is the

case for every qualifier/identifier pairing.

Note that the CGIF2 Flat map will generally contain every single mapping present in the file, in every single row, starting at

the ISA02 element at the outer envelope and going on to the GS loop, Transaction Set header loop, and so on into the

deepest loop. Furthermore, a mandatory NEWROW column ends every Flat, forcing the engine to encode multiple cutout

mappings instead of continuing to parse segments along the main data encoding branch of the hierarchy.

Along with the most common business mapping, many scaffolding elements are present as well – for example, the number

of segments in the SE segment that ends a transaction will be decoded and parsed, and present in every single row of the

transaction. These are generally ignored since these scaffolding elements do not directly represent business information.

The problem here is that it conflicts with a very common scenario, which is to reprocess EDI files for a different trading

partner or business purpose.

For example, say that an HMO has been collecting all of the Provider 837 Claim files for the entire year, but then the state

dictates that these files must be resubmitted to the state’s health department for analysis of certain health metrics on a

populace scale. The state requires that the headers be changed and that certain data elements be altered or removed to

accommodate its data requirements.

With SERENEDI, this may seem simple and straightforward – decode the original file to the Flat register, send that to a

database table, UPDATE the columns to reflect the new header values, remove the columns for the maps the state does

not want, then re-encode the file and send it to the state. But this approach will definitely fail.

The reason is that all the decoded scaffolding elements, like Number of Segments, are now being provided to the SERENEDI

engine for encoding, and removing some data elements will alter the number of segments from the original file. The file

will be parsed by the state and rejected because the number of segments provided in the file does not match the number

of segments actually present in the file.

The solution to this problem? Give SERENEDI fewer mappings so it can generate correct default values independently.

DEFAULTED SCAFFOLD ELEMENTS

SERENEDI can generate default mappings for the following ISA segments:

ISA01-ISA04 – If values are not provided for these maps, SERENEDI will default them to 00 and spaces. Note that no matter

what, the first mapping provided to SERENEDI must contain the two-digit specification identifier.

ISA09 – The six-digit year time stamp will default to the current date.

P a g e | 59

ISA10 – The four-digit time stamp will default to the current time.

ISA14 – If no value is supplied, SERENEDI will default a value of P, meaning production.

IEA01 – This will be defaulted to the number of included GS/GE functional groups.

GS04 – This will default to the current eight-digit date stamp.

GS05 – This will default to the current four-digit time stamp.

GS08 – This will default to the correct specification identifier supplied in the initial two-digit specification mapping prefix.

GE01 – This will default to the number of Transaction Sets encoded.

ST03 – This will share the same value as GS08.

SE01 – This will default to the number of segments in the transaction.

BHT04 – This will default to the current eight-digit date stamp.

BHT05 – This will default to the current four-digit time stamp.

HL01-HL04 – The hierarchical level mappings will be automatically generated based on the situation of the data present

within the transaction.

CAS02-CAS19 – SERENEDI will shift CAS mappings in groups of three to the left if there are data “bubbles” filled with

unassigned values, such as when data is present for mapping CAS05/CAS06/CAS07, but no data is present for

CAS02/CAS03/CAS04. This enables developers to assign specific business adjustment amounts to specific elements

without worrying about creating a noncompliant segment because of missing elements earlier in the segment – SERENEDI

will respect the contents of the data but not the specific position of the data in order to create a compliant segment.

Therefore, a “less is more” approach is necessary when recasting transactions for another purpose by removing all the

elements defined above that pertain to scaffolding and letting SERENEDI choose the best values automatically.

FLAT INTERFACE

Encoding CGIF2 Flat to HKey

The HKey register is the internal SERENEDI representation of a HIPAA EDI transaction, but not yet generated into a text file.

This section will dive into the process SERENEDI uses to translate a CGIF2 Flat register into the HKey register, which is very

close to generating an actual EDI transaction.

When SERENEDI encounters a loaded CGIF2 Table, whether loaded from a database table, CSV file, or other source, it goes

through the following process to translate this two-dimensional data source into a hierarchical data projection:

1. First, it obtains the specification from the first two digits of the mapping, the specification tag. These tags are

defined in the Appendix 1

2. Second, all the mappings are sorted into hierarchical order, with the initial ISA mappings occurring first and the

deepest hierarchy mappings put in the last place.

3. Third, data is scanned from left to right in sorted order – thus, the ISA mappings are scanned first in every row,

then the GS mappings, and so on down the hierarchy.

P a g e | 60

4. Mappings are empty if they contain a database null value. String values are empty if they have a database null or

zero-length string. Any loop that contains at least one non-empty mapping is considered as having data and will

be encoded.

5. The first row encountered by the parser will have all non-empty loops encoded. For every subsequent row

thereafter, every loop is compared to the corresponding loop in the previous data row. If a difference is detected,

then that loop and all non-empty loops that are deeper in the hierarchy are considered “fresh” data.

6. For each database row, the NEWROW column must be present with a 1 or 0 value. If the value is 1, then the

deepest standard data-carrying loop is considered fresh data and will not be compared to the previous database

row. If the value is 0, then every non-empty cutout loop will be marked as fresh data and encoded into the HKey.

To give a simplified visual example of this process, consider the following table, which represents a simplified selection

of loops in an 837 Institutional file:

ISA GS ST 2000 SBR 2300 CLM 2400 SVC NEWROW
X X X X X X 1
O O O O O X 1
O O O O DELTA X 1
X X DELTA X X X 1

X – Data present and selected for encoding

O – Data present and not selected for encoding

DELTA – Data present that is distinct and different from the previous row

Each cell in this table represents a collection of individual mappings associated with each loop and presented to the

SERENEDI parser. In this example, every loop is considered non-empty. Examining the top row, we see that every loop has

data and every loop is selected for encoding. In the second row, every data element is exactly the same as in the previous

row. The deepest non-empty standard loop is 2400 SVC, and it will automatically be selected for encoding since NEWROW

contains 1 and therefore the deepest non-empty standard loop is automatically selected for encoding.

In Row 3 of the above example, the CLM loop contains at least one element that is different from the previous row. As a

result, that loop and everything deeper are considered fresh data marked for encoding.

In Row 4, the Transaction Set header loop contains at least one element that is different from the previous row, and as a

result, everything deeper along the hierarchy is marked as fresh data and encoded.

The order of the encoded loops in an EDI file, ignoring trailing envelope segments, will proceed like this:

ISA Outer Envelope

GS Group Header
ST Transaction Set Header

2000 SBR Subscriber Loop
2300 CLM Claim Loop
2400 SVC Service Line
2400 SVC Service Line
2300 CLM Claim Loop
2400 SVC Service Line

ST Transaction Set Header
2000 SBR Subscriber Loop

P a g e | 61

2300 CLM Claim Loop
2400 SVC Service Line

Potential Pitfalls of CGIF2 Flats

For well-formed EDI transactions, this system allows SERENEDI to handle virtually any file, transform it into a representation

that is straightforward for humans to work with using SQL database tools, and then transform it back into an EDI file. But

what about broken EDI transactions?

In this case, what if an original set of claims and a duplicate set of claims data is sorted and then presented to the SERENEDI

parser – how does SERENEDI handle this case? According to the rules given above, it’s very predictable: since SERENEDI is

expecting data to be completely sorted before seeing it, all duplicate claims will be aggregated together in sequential order

and processed row-by-row by the parser.

Since there is no difference between the Original Claim and Duplicate Claim maps, it won’t trigger a delta that will help

the SERENEDI parser trigger the row as a new claim. However, since each database row is guaranteed to encode at least

one loop, all the original and duplicate service lines for the claims will be encoded – leading to each claim having double

the original number of service lines, and obvious imbalances in the Claim Charge amounts.

For more information on creating outbound EDI files, see the chapter “Creating Outbound EDI Files.”

DECODING HKEY TO CGIF2 FLAT

The opposite of encoding an HKey (and by implication, an EDI transaction) is decoding an HKey to a Flat. Unlike the

encoding step, this process is completely automated. The format of a HIPAA EDI transaction is rigidly predefined within

the HIPAA implementation guides, and therefore every loop, segment, and element has a strictly assigned role. The way

SERENEDI automatically creates a Flat register from an HKey register is pretty much the opposite of the encoding steps:

1. Descend into the hierarchical segments of the transaction and decode all mappings into a two-dimensional data

table.

2. When the deepest loop encountered iterates or starts to ascend to a higher hierarchical level, trigger a new row

and store all the encountered maps in the columns. Copy all parent loop maps. Mark the NEWROW column as 1.

3. When cutouts are encountered, they are stored and processed in line with the other maps unless they repeat

more than once. If that occurs, create a brand-new row, copy the parent loop maps, and iterate only on the

cutout segments, with each NEWROW field marked as 0.

At the end of the decoding process, a table that maintains proper sorting from highest hierarchy mappings to lowest

hierarchy order is generated. And, assuming there were no integrity errors in the source EDI, immediately feeding this Flat

table back into the encoder should yield a verbatim copy of the original EDI file.

HIERARCHICAL DATABASE INTERFACE

The Hierarchical Database (HDB) interface provides an alternative method to storing SQL query-accessible transaction data

compared to the Flat interface. Instead of a single database table, one database table per loop is utilized in the transaction,

joined together in parent-child relationships that exactly mirror the structure of the EDI transaction. To see the exact

relationship between parent and child loops in SERENEDI’s somewhat customized implementation of the HIPAA

implementation guide’s hierarchies, see “Appendix: Specification Hierarchy Structures.”

P a g e | 62

By default, the names of the HDB tables begin with HDB_5010, an underscore, the short specification name without any

Addenda suffix, an underscore, and the loop short name. A collection of HDB tables for a specific transaction is called an

HDB tableset.

For example: HDB_5010_837P_L2320

The layout of every HDB table begins with four columns:

PK_ID (int) Primary key, auto-generated identity column

BIN_ID (int) Foreign key reference to the BIN_LOG table

BIN_IX (int) BIN Index, a numerically increasing index starting at 1 for every new BIN_ID.

PAR_BIN_IX (int) Parent BIN_IX, relates this loop’s maps and data to the parent BIN_IX identifier

PAR_2000C_IX

(int)

Optional field occurring only in 837 I / P L2300 Claim loops that links the claim to

patient loops

In the example above, this table could contain maps such as:

L2320_01_SBR01_PYR_RESP_SEQ_NR

The CGIF2 mappings are very similar to the Flat interface implementation, with one key difference: all loop iterations

belonging to Single Iteration and ValueIteration maps are locked at 01. The loop iteration maps are redundant as the loop

data structure itself encodes this information merely by having two Single Iteration loops parented to the same row.

Besides this, the maps are functionally identical to CGIF2 Flat interface mappings.

The default table names can be overridden with a supplied prefix. In this case, the loop names will be added to the supplied

prefix so that the loop data can be retrieved.

WARNING: Child loops need to occur in an order that is synchronized with parent loops; in other words, SERENEDI is

expecting both the BIN_IX and the PAR_BIN_IX key columns to occur in an incrementing and ascending to be able to

register the database rows as valid child loops. This means that you cannot arbitrarily “insert” new children loops by

adding new rows to the bottom of the data associated with that BIN_ID; all child loops pertaining to the same PAR_BIN_IX

parent loop reference must be grouped together in ascending order in relation to the BIN_IX key.

XML INTERFACE

The XML interface is ideal for making data consumable by “NoSQL” hierarchical database systems. The mapping rules for

XML differ somewhat from the database-centric systems described above, with the loop and segment-element parts of

the mapping split into two.

Similar to the hierarchical database system, loop iterations for qualified loops are not present in the XML Interface mapping

system – these are implied naturally from the structure of the XML file. Thus, mappings that normally look like this:

L2330C_01DN_REF_PVR_COMM_NR L2330C_01P3_REF_PVR_COMM_NR

123450004 123450005

P a g e | 63

. . . will be presented in XML like this:

<L2330C_DN>

 <REF_PVR_COMM_NR>123450004</REF_PVR_COMM_NR>

</L2330C_DN>

<L2330C_P3>

 <REF_PVR_COMM_NR>123450005</REF_PVR_COMM_NR>

</L2330C_P3>

Technical Inventory

At left is the default installation

hierarchy for SERENEDI, with the base

folder being ‘serenedi’.

In the bin folder are the binaries

required by the .NET Core

environment; most of the files and

subdirectories are various libraries used

by .NET Core and SERENEDI.

The license.key file is associated with

your licensing tier and period.

Replacing it can be done while the service is running, so if your licensing options change, it can be replaced in real time.

SERENEDI searches for the license.key file in three places: serenedi/shared/license.key, serenedi/license.key, and finally,

serenedi/bin/license.key.

The resource file contains information necessary to spawn itself to databases, as well as various binary dependencies.

The docs folder contains the manual, the licensing information, and various licensing files needed by the libraries SERENEDI

uses.

The pipeline folder starts with a single SCORE script, Pipeline.ps1. When SerenediService is first run, it executes a single

bootstrap event that calls on the pipeline system to initialize itself. If initialization is successful, a number of folders will be

present relating to the built-in pipeline system in this directory.

The seed folder contains 14 seed files. These can be used to test different scenarios, and are created from the sample data

and SQL Stored Procedures stored in the serenediCore distribution database.

serenedi

bin resource shared

docs

pipeline

seed

P a g e | 64

SERENEDI TECHNICAL REFERENCE

OVERVIEW

This technical reference is meant to give a full, detailed review of all technical aspects of SERENEDI. All aspects of the

platform are covered so that you have a single reference point.

We start with a review of the CGIF V2 mapping system that is the core of all projections for HDB, CSV, Flat, and XML

conversions. We go deep into the automation system and review the technology behind triggers, events, and workers.

Then, we go into the architecture of the distribution database, serenediCore, and review each table and column.

Next, in the SCORE Script reference, we review the SERENEDI API commands that comprise the SCORE scripting system,

along with error messages. Afterward, we review the REP Code user-extensible Rules Engine codes. Finally, we review the

hierarchical relationships of the loops within each specification – which is critical for understanding how HDB BIN data is

committed to the database.

P a g e | 65

Event System

The SERENEDI Event system is designed to make automation of

healthcare integration processes simple and straightforward. It

begins with the triggers set up in the BIZ_TRIGGER table. This table

defines the criteria by which events are generated, and also specifies

the PowerShell Core SERENEDI (“SCORE”) script to execute when the

trigger is fired. A background process constantly scans the firing

criteria, and if the criteria are met, then a new event is generated.

New events can be generated by external database events as well.

In the background are a number of worker processes that scan the BIZ_EVENTS table for new work to do. When a worker

process manages to take exclusive ownership of an event, it runs the SCORE script associated with that trigger and sets

certain global variables according to the firing criteria and type of event. It’s important to note that SCORE scripts generally

run in parallel with one another unless a trigger is set up for serial execution.

SCORE SCRIPT SYSTEM

SERENEDI contains an embedded scripting system called PowerShell Core. It extends the default library with a number of

cmdlets, which is PowerShell Core terminology for custom functions. Each time a SCORE script runs, a new SERENEDI

Session state object is spawned that encapsulates the main registers used for EDI translation and conversion. It also

contains the “MsgLog,” register, a running list of messages generated throughout execution of the script; at the end of

execution, these messages will be added to the BIZ_MSG table for later reference.

1. File

Triggers

1. SQL

Triggers

3. Events

2. SERENEDI

Polling

Service

4. Worker

Processes

5.Messages

Event Life Ccycle

1. Triggering conditions are set up

in the BIZ_TRIGGER table.

2. The SERENEDI Polling service

continuously scans for firing

conditions.

3. When a firing condition is met,

a new entry is made in the

BIZ_EVENT table.

4. A background Worker Process is

assigned to the new event, and

processes it.

5. The event result is stored in the

BIZ_EVENT table and messages

are stored in the BIZ_MSG table.

! SERENEDI uses PowerShell Core with custom

Cmdlet extensions and runtime environment.

In the rest of the manual, these are referred to

as SCORE scripts. Also, we have an 1 hour 4

minute training video on Triggers and

Automation: https://youtu.be/0UN9RcZoUtI

https://youtu.be/0UN9RcZoUtI

P a g e | 66

Each event has up to four string arguments that are available to be used within the SCORE script as in-session variables.

The maximum runtime of a SCORE script is one hour. If that threshold is exceeded, the background service will assume it

is a hung process and stop it. This prevents rogue events from tying up individual worker resources dedicated to processing

the events.

SCORE scripts are aimed at handling discrete events in a single business process, with one SCORE script servicing one

business process that is composed of one or more related triggers, which run in small, independent sections within that

script. With the “bootstrapping” capability, SCORE scripts can be designed to initialize their own runtime environment,

creating all the objects needed to run a full multi-trigger business process from scratch, including triggers and directory

structures.

One good example to follow is the default Pipeline script – initially, the SERENEDI environment exists only as an empty

pipeline folder and nothing predefined in the serenediCore database except for a single BIZ_EVENT row that causes

SERENEDI to call the Pipeline bootstrap procedure. The entire pipeline environment is created from that single event.

By designing SCORE scripts this way, business processes can be easily be migrated to other environments, such as QA or

PROD.

TRIGGERS

A SERENEDI trigger is broadly defined as the initial condition established to begin work on a specific item. Because the

events fired by the trigger are meant to run in parallel, all the work it accomplishes should be isolated from interfering

with other triggers, or from being influenced by other events fired by the same trigger. The SERENEDI system architecture

is specifically designed to let dozens of concurrent processes work without interference.

There are four ways to trigger an event:

1. Direct Injection – Bypasses the normal trigger system to directly execute a SCORE script with parameters. Direct

Injection can be accomplished with either SQL inserts or XML messages.

2. SQL Trigger – Sets specific criteria based on SQL results to fire an event.

3. Upload Trigger – Sets specific criteria based on moving files from one folder to another to fire an event

4. File Trigger – Sets specific criteria based on the presence of files in a specific folder to fire an event.

P a g e | 67

Direct Injection

Direct Injection of events means you are creating an event that is not tied to a specific trigger. Since the trigger contains

information about the SCORE script to execute, then the path and filename of the SCORE script must be included in the

fourth argument parameter for this event, which leaves the first three arguments available to pass information to the

script.

One example is to present the way the whole pipeline environment is able to bootstrap during the initial install. Before the

bootstrap, no triggers are defined at all in the database environment:

Direct Injection events can be used anytime you don’t need a complex triggering architecture, and only need to run

business processes on an as-needed basis. When the event is finished executing, you may review the logs in BIZ_MSG that

are tied to the new BIZ_EVENT row.

XML Injection

The XML Injection path enables users to create events and see the results using only XML files. The XML file must have a

unique name, and it must contain a single XML message formatted similar to the following:

<CtrlMsg>

 <trig>1</trig>

 <crit>FIRING_CRITERIA</crit>

 <arg1>Argument1</arg1>

 <arg2>Argument2</arg2>

 <arg3>Argument3</arg3>

 <arg4>Argument4</arg4>

</CtrlMsg>

The 010 Event pipeline picks up the message and pushes it into the BIZ_EVENTS table, where a worker process picks it up.

Then, when it has finished execution, the resulting messages are pushed into the BIZ_MSG message log, to an XML file in

the output folder.

If the trig parameter is not supplied, then the arg4 parameter is used as the path and filename to a SCORE script that runs.

The first three arguments are passed to the SCORE script when it starts execution.

SQL Trigger

This fires a trigger when an SQL statement returns a result of 1. The actual SQL itself is supplied in the FIRE_LOGIC column

of the trigger and must be prefixed with SQL:. If this condition becomes true during polling, the event is fired. If any of the

FORCE_ARG1 – FORCE_ARG3 parameters are set within the trigger, they will propagate to the ARG parameters within the

resulting event. If FORCE_ARG4 is set, it will be parsed as a Bin Endpoint Alias and the query will be executed against that

database endpoint. This allows externally defined database servers to trigger new events.

INSERT INTO BIZ_EVENT (EVENT_DATA3, EVENT_DATA4) SELECT ‘INITIALIZE’,

‘C:\SERENEDI\PIPELINE\PIPELINE.PS1’

P a g e | 68

File Trigger

The file trigger system in SERENEDI is quite flexible. First, there are two primary modes of operation, ARCHIVE and UPLOAD

mode. UPLOAD mode requires two folders, the Initial folder and the Source folder. The Initial folder is where files are

initially dropped; when the background SerenediService is able to move a file from the Initial folder to the Source folder,

then the event on that file is fired. The only dependency is that the file does not exist in the Source folder prior to the

event.

ARCHIVE mode will poll the BIZ_EVENT system and the file system every time the trigger is polled. Any new files that have

not been linked to an event will be fired as new events.

Fire Logic

Fire Logic filters a triggering condition of Upload, Archive, and SecureFTP Archive file triggers in one of four ways. The filters

can be stacked with the pipe character, allowing a rich set of criteria.

FILTER

The filter is a flexible tool to tightly control the types of files that fire the trigger. For example:

FILTER:*.835

The above filter will trigger on files only if they end in the .835 extension – all other files will be ignored.

FILTER:ELIG??????.834

The above uses the ? wildcard character to establish that the filtered file must begin with ELIG, end with .834, and have

six indeterminate characters in the middle to fire the trigger.

In some cases, it’s necessary to process file sets instead of individual files – that is, a file should be processed if and only if

it’s accompanied by a set of files with a common naming protocol. SERENEDI can accomplish this by stacking the FILTER

directive with different criteria. This behavior is ideal for ARCHIVE triggers since files don’t need to be moved to fire the

trigger, and thus the set is kept together.

Example:

FILTER:Z1*.TXT|FILTER:Z2*.TXT

If two files named Z1XYZ.TXT and Z2XYZ.TXT arrived, then this filter would allow the Z1XYZ.TXT to fire the trigger. If the

second file was named Z2XYZZ.TXT, the file would not trigger because the wildcard pattern is not common to both files.

TIMESTAMP

Technically, this is not a filter so much as it is a modification to an Upload trigger. In this case, the timestamp value is treated

as a C# DateTime Format string that will be added to the end of a filename (and prior to the extension) when the file is

moved to the Source folder. This enables Upload triggers to operate on new files with old filenames – by suffixing a unique

date/time stamp, the old filename becomes a new one, and the file can fire the trigger.

Example:

TIMESTAMP:yyyyMMddHHmm

P a g e | 69

If an Upload trigger filename started as CLINIC_001.835 and was uploaded on December 21, 2019, 12:51 a.m., it would

end up as CLINIC_001201912210051.835, as an example.

SQL

This sets the SQL that will be used in an SQL trigger. For SQL triggers, the firing condition is when this SQL executes on the

SERENEDI database and results in an integer 1 value.

Example:

SQL:SELECT 1

This will result in an SQL trigger that executes every time it is polled. Note that only SQL triggers can execute triggers

external to the serenediCore database; the FORCE_ARG4 field of the trigger is used for the BIN Endpoint Alias.

SCORE SCRIPTS

SCORE scripts – aka SERENEDI PowerShell Core scripts – leverage the cross-platform basic functionality of PowerShell Core

to expose virtually every part of the SERENEDI engine to the developer. If your business needs go beyond the basic

transformations supported by the built-in pipeline system, then you’ll need to learn about developing SCORE scripts.

See the installation instructions to install Visual Code and hook it up to the SERENEDI environment. This is ideal way to

develop SCORE scripts, as that allows a rich debugging and development system.

To get the most out of the SCORE system, it’s important to keep these points in mind:

PORTABLE

Portable scripts are ones that can easily be deployed from one server to another, especially from a development

environment to a QA or production environment. This means:

- Absolute paths should be avoided. The SERENEDI installation path may not be the same on the server you are

targeting. The $ wildcard used within SERENEDI directory names will always resolve to the SERENEDI/pipeline

directory as it exists in that particular environment. Because this wildcard is unknown to normal PowerShell Core

commands, you could set the $ pipeline variable in this example, and use that instead:

 $pipeline = (Join-Path $basePath ‘pipeline’)

- You’ll need to be careful with path name separators. For example, Unix pathnames follow a forward-slash, while

Windows uses a backslash character to specify paths. By using the Join-Path command as shown above, you can

indicate a full path that will work regardless of whether the target server is on a Unix or Windows platform.

- Use SCORE Environment commands for setup. Because triggers, endpoints, and SecureFTP sessions can all be

initialized using only SCORE commands, this also means that a single INITIALIZE subroutine in your workflow can

fully set up and prepare the SERENEDI environment from scratch. You could also have a DEINITIALIZE subroutine

for takedowns, but be aware that once messages and events are tied to your new triggers, it’s not a simple matter

of deleting everything – you’ll need to delete the messages, then events, before the relational constraints allow

you to delete the triggers.

P a g e | 70

PARALLEL

- SCORE scripts are meant to be executed in parallel – many processes executing the same script, but with different

arguments. The background BIN system is engineered to feed data from dozens of processes simultaneously

without database locks or choke points. This means that generally, SCORE scripts should process at most one file

at a time. Although PowerShell Core has looping mechanisms, you will get much better performance from the

environment if you write short scripts that operate on one file at a time, then exit. This way, the SERENEDI load-

balancing system can make the most of system resources.

- This also means you should avoid having SCORE scripts execute long-running database operations. SERENEDI has

safeguards to prevent SCORE scripts from running too long, and will kill the process if it exceeds the built-in four-

hour time limit.

- SERENEDI will have a set number of worker processes running in the background, waiting for new work to appear

in serenediCore. This is usually a quarter of the licensed workers or a quarter of the available CPU cores, whichever

is less. Once it starts to become busy, SERENEDI automatically launches the full available number of worker

processes (the number of available CPU cores or the licensed number of cores, whichever is less) until there is no

more work to do, at which point it returns to “idle” mode.

PIPELINE WALKTHROUGH

In this section, we will go into much more detail about one SCORE script that is provided with the distribution: Pipeline.ps1.

The main reason is that this single SCORE script does the following things:

1. It creates the entire pipeline folder hierarchy as well as all pipeline triggers

2. It partitions functionality to serve all the pipeline triggers in individual sections

This is a good model to follow when creating custom SCORE scripts for your own applications. With a dedicated installation

function, the SCORE script becomes portable. This same script could be tested and deployed on a development server,

then deployed on a QA server, then on a production server, all with the same steps.

By handling multiple triggers, it’s possible to maintain a single script to handle multiple, related business processes and

have a single point of maintenance.

Setting the Base Directory

…

$base = (Join-Path $basePath 'pipeline')

…

The $basePath is a predefined SCORE variable that represents the SERENEDI installation directory. Many people would

choose to simply add the pipeline folder to the base directory, like so:

$base = $basePath + ‘\pipeline’

Since UNIX systems and Windows systems use different characters for path separators, this is not cross-platform. The Join-

Path function, however, will work reliably to join two paths regardless of platform.

Installing the Environment

…

P a g e | 71

if ($eventData3 -eq 'INITIALIZE')
{

 $pipebase = (Join-Path $base '001_Normalize')
 mkdir $pipebase
 mkdir (Join-Path $pipebase '01_in_edi')
 mkdir (Join-Path $pipebase '02_done_edi')
 mkdir (Join-Path $pipebase '03_out_edi')
 mkdir (Join-Path $pipebase '04_err_edi')
 sapi-EnvTriggerUpsert -TriggerName 'PIPE001_NORMALIZE' -Script '$\Pipeline.ps1' -TriggerType
'LOCAL_UPLOAD' -InitFolder '$\001_NORMALIZE\01_in_edi' -SourceFolder '$\001_NORMALIZE\02_done_edi' -
PollInterval 30 -IsEnabled $True -ForceArg3 'PIPE001_NORMALIZE'

…

First, the third argument is checked for the Initialize command. This is important because when the serenediCore database
is first set up, prior to SerenediService running, there are no triggers at all – only a single BIZ_EVENT set up to execute this
script in immediate mode. Once SerenediService first starts to run and launches a worker process, this initialization event
will be the first thing to be processed.

This small section sets up the environment for the Normalize pipeline. First, it makes the directory hierarchy for the
pipeline, and then it creates the trigger. Note the use of the $ in the command – this is shorthand for C:\serenedi\pipeline
or wherever SERENEDI is installed to, and is cross-platform compatible. The sapi-EnvTriggerUpsert command will either
update an existing trigger with the same name or, if the trigger does not exist, create it from scratch. The script is set the
same for all of these triggers: $\Pipeline.ps1. The LOCAL_UPLOAD trigger type is a reliable way of processing incoming EDI
files, as the trigger cannot fire unless the file has been successfully moved from the Init to the Source folders. The Poll
Interval is set to 30 seconds, the event is enabled, and, finally, all events created with this trigger will have Argument 3 set
to PIPE001_NORMALIZE. This is the how the SCORE script will differentiate this trigger from all of the other triggers
executing this same script – via Argument 3.

Handling the Event

…

NORMALIZE Pipeline
01_in_edi - EDI file to ingest
03_out_edi - Reprocessed and Normalized EDI file
04_err_edi - Errored EDI file

if ($eventData3 -eq 'PIPE001_NORMALIZE')
{
 sapi-SegPoolFromFile -Filename $eventData1
 sapi-SegPoolToHKey
 sapi-SegPoolFromHKey

 if ((sapi-FetchVar -Value "CRIT_ERR") -eq $false)
 {
 $newPath = (Split-Path (Split-Path $eventData1 -Parent) -Parent) + '\03_out_edi\' +
[System.IO.Path]::GetFileName($eventData1)
 sapi-SegPoolToFile -Filename $newPath -Formatting '*~>^' -bolCR $true -bolLF $true
 }
 else
 {
 $newPath = (Split-Path (Split-Path $eventData1 -Parent) -Parent) + '\04_err_edi\' +
[System.IO.Path]::GetFileName($eventData1)
 Move-Item -Path $eventData1 -Destination $newPath
 }
}

P a g e | 72

This small set of code is the entirety of the Normalize pipeline handler. After checking Argument 3, first the file is loaded

from the $eventData1 variable. This variable reflects EVENT_DATA1 from the BIZ_EVENT table, as set by the

LOCAL_UPLOAD trigger type, when it is able to successfully move a file from the Init folder to the Source folder as defined

in the trigger.

From there, it translates to the HKey register and then back from the HKey register. This will set all the encoding options –

such as the element and segment separators – to the same value, and ensure all files are formatted the same way with

respect to carriage returns at the end of segments, and so on. Furthermore, any minor deviances from the HIPAA

Implementation Guide specifications will get filtered out in this step.

Assuming that the file did not have any critical errors, then sapi-FetchVar -Value “CRIT_ERR” will return a False Boolean

value, and the sapi-SegPoolToFile command will re-create the file in the 03_out_edi folder.

If there was a critical error, then the original file will be moved from the 02_done_edi folder to the 04_err_edi folder.

P a g e | 73

Creating Outbound Transactions
The SEED system within SERENEDI is a set of stored procedures and fixed data that enable you to create new, non-PHI test

files for 14 different 5010 EDI specifications. These files have been tested with third-party bureaus to ensure full HIPAA

compliance. This provides everyone developing outbound EDI transactions a fixed starting point from which to begin

development, using well-known SQL syntax and objects. Furthermore, by copying / modifying these procedures, it’s easy

Because HIPAA EDI files are necessarily concerned with transmitting managed care data, we needed to create a rich set of

sample tables that mimic a simple managed care system so these seed files have information that makes them look and

feel like normal EDI files. The clue that these tables do not actually contain any PHI is in the last names: they are names of

ethnically diverse foods. The 14 stored procedures are described in more detail at the end of this chapter.

Each stored procedure translates the sample data and projects it to a CGIF2-compliant data extract that SERENEDI can turn

into an EDI file. Therefore, if you’d like to quickly create a new EDI extract process, you can create a copy of an existing

stored procedure and alter the extract so that instead of pulling from the sample tables, it pulls data from your managed

care system sources. If the fields you need are not present within the extract, you can look up the HIPAA EDI equivalent in

SERENEDI in the html files located under the /serenedi/shared/docs/specs directory.

Note that these examples are all data-ready to project data as a Flat register, but this is not your only option. Some

situations – especially those that involve highly repeating segments or highly dynamic mappings – are more difficult to

express in the Flat projection than with the Hierarchical DB projection. You could artificially create a new HDB BIN entry in

the BIN_LOG table, programmatically make insertions into the HDB tables using the BIN_ID to tie the data together, and

then use the 008_BINToEDI pipeline to export the file to the file system, just as if you had originally imported that file from

an EDI source instead of generating the data yourself. However, using the Flat export mechanism is easy and

straightforward in most situations, and with stored procedures, SERENEDI can go directly from procedure to an EDI file in

the file system.

The fastest way to generate an EDI file using these sample EDI extracts is simply to create a new BIZ_EVENT row that

requests the 008_BINToEDI pipeline to generate a file from a dynamic data source. This generates a ‘seed_837p.txt’ file

and places it in the SERENEDI base directory:

INSERT INTO BIZ_EVENT(BIZ_TRIGGER_ID, EVENT_DATA1, EVENT_DATA2, EVENT_DATA3) SELECT
BIZ_TRIGGER_ID,’EXEC USP_837P_EXTRACT’,’SEED_837P.TXT’, ’PIPE008_BINToEDI’ FROM
BIZ_TRIGGER WHERE TRIGGER_NAME=’PIPE008_BINToEDI’

Another way to do this is by using SERENEDI Studio. This gives you several

advantages during development: you can load the Flat register and then

immediately decode it, thus validating it against the many business validation

rules built into the SERENEDI environment. From SERENEDI Studio:

First, click on the BIN tab, enter EXEC USP_837P_EXTRACT in the bottom text box,

and then click the blue * < DB button above the text box. This results in a popup:

P a g e | 74

Data then is loaded into the Flat register, like so:

If the above is successful for your custom extracts, then this means all of your fields are CGIF2 compliant. To carry the

process further, you will need to press some more buttons:

First, click HKEY < FLAT to load the HKey register from the Flat register that you just loaded. Then, click SEG < HKEY. You

should see the EDI segments in the lower left corner. However, this hasn’t subjected the file to the extensive validation

checks. To do this, click SEG > HKEY. The process of transforming the SegPool register back to the HKey register also triggers

all the validation checks built into the system.

The blue loop names embedded in the SEGPOOL Register indicate that the file was successfully decoded. If the status

window shows a count of 0 messages, then SERENEDI believes it is a compliant file:

If there are messages, they will be embedded in the SegPool Register pane. If you

have trouble viewing the messages because the resulting SegPool is too big to

display, you can always use the RunBox command window to send the current

message log to an HTML file in the file system:

sapi-MsgLogToFile -Filename ‘C:\serenedi\msgs.html’

Tips for Creating Outbound EDI Files

1. Usually, the best approach to creating new outbound specifications is to create them one field at a time, from the

outer envelopes down to the deepest loops, and test the encodings step by step. Since encoding a file just takes a

P a g e | 75

second, you can use the above steps to repeatedly test the maps and extract logic to make sure the segments are

generated in the way that you expect.

2. Be aware that each field in SERENEDI is associated with four cardinal data types: integer, decimal, string, and

date/time. The types are provided for each mapping in the HTML files under the docs directory so you know what

data type each column is expecting. Encoding the wrong data type into a map can have unpredictable effects.

3. SERENEDI will not encode a loop unless at least one non-null data value is present in that loop. If you are getting

invalid loops in the outbound file, check the data extract to make sure you aren’t accidentally sending any non-

null data elements for that loop. If you examine the sample extracts, you’ll see several cases where entire sets of

fields are encased in CASE WHEN <logic> THEN <value> ELSE NULL END. This is a way to ensure that the loop will

only occur for a specific condition, and at no other time.

4. Remember that this encoding/decoding process is completely two-way – so if you’re having trouble

conceptualizing the data maps you need to create a certain set of segments, it might be easier to copy one of the

sample files, manually edit it to add the segments you need, and observe how it decodes to the CGIF2 Flat space.

This will guide you toward the best way to project your business data to achieve that result.

Common Attributes of the Seed Extracts

There are 14 stored procedures within the distribution database that define the seed extracts. At the very beginning, the

distribution database increments the Interchange Control Number record in the SAMPL_HEADER that is linked to that

transaction. This ensures that every file generated has a unique ICN. Then, it projects the sample data to create a compliant

EDI transaction for that specification. A critical ORDER BY statement comes at the end. Although the extract itself could be

placed in an SQL View, SQL Server does not honor ORDER BY clauses within Views, and therefore stored procedures are

the most reliable way to ensure the data is in the proper order for encoding.

Also, each specification remaps the first field, ISA_ISA02_NO_AUTH_NFO from the SAMPL_HEADER table, to a different

name that incorporates the specification tag. Without this specification tag, SERENEDI will not know what transaction

these maps belong to, so this is quite crucial.

In each of the remaining sections in this chapter, we will discuss a different extract. To see the source code of the extract

itself, you can right-click on the stored procedure and select Script Stored Procedure As, then Create To from within SQL

Server Management Studio.

USP_270_EXTRACT

This stored procedure projects a group of subscribers and dependents in a mock 270 eligibility request file. It joins the

Payer Provider ID provided in the Sample Member data to the Sample Provider table, and the ORDER BY clause at the end

ensures data is sorted by these providers first, and then by the Member ID number. It generates 120 records.

USP_271_EXTRACT

The 271 extract is almost exactly the same as the 271 extract, except that it adds a Plan Begin date of 2019-01-01 for all of

the 120 records it returns.

P a g e | 76

USP_275C_EXTRACT

This stored procedure is a “proof-of-concept” method for encoding 5010 275C Patient Information EDI files from a

database. It pulls the member information for the first defined member in the SAMPL_MEMBER table (MEMBER_ID = 1)

and pulls the binary contents of the new “PATIENT_CHARTS” column that is part of that table. This SERENEDI Flat-encoded

set of maps and data can then be used to create a new 275C Patient Information file.

USP_276_EXTRACT

This query hits the sample tables to generate a Health Care Claim Status Request transaction for 889 claim lines. Some

things to note about this extract:

- Because there are members without dependents defined in the sample tables, the 2200D and 2210D loops should

only be present when the member is also the subscriber; the 2200E and 2210E maps should be completely nulled

out to prevent an erroneous loop being encoded. This is accomplished with the CASE WHEN DOB1 IS NOT NULL

THEN … ELSE NULL END logic for the 2100E/2210E maps – it ensures the claim information is only transmitted

when DOB1 (Dependent Date of Birth in the subquery) has a non-null value, meaning that member is a dependent.

- The subquery is a way to bifurcate the member population into subscribers and dependents so that the

appropriate logic branches can be used for each claim line.

USP_277_EXTRACT

This extract is a mirror of the 276 extract, simulating a response to a claim inquiry. Since the dependent date of birth is not

sent back, the dependent ID card is checked for a non-null value to verify whether to send the 2200E loops.

USP_277CA_EXTRACT

This is a Claims Acknowledgment extract. Instead of sending, unlike other files, it requires that the total submitted charges

for claims be submitted at a header level and member level. This is the responsibility of the two subqueries that generate

the BLLR_CLM_CHG_AMT and the CLM_CHG_AMT fields: generate a sum total of all claims by biller and a sum total of

claims by member.

USP_278_REQ_EXTRACT

This is a Health Care Services Review – Request for Review transaction. For this specification, each member to be reviewed

is sent as a different transaction with its own ST/SE envelope. The Place of Service code filter restricts the query results to

Inpatient claims. The subquery gathers Place of Service and minimum service dates for this extract that go in the 2000E

loop.

USP_278_RESP_EXTRACT

This query provides a member-level response to the Health Care Services Review, so it does not need to encode any claim

lines and gives a simple, canned response.

USP_820_EXTRACT

This is a Payroll Deducted and Other Group Premium Payment for Insurance Products extract where the payer is being

billed $10 for every member (as shown in the L2300B_RMR04_DTL_PRM_PMT_AMT mapping). This file is split into six

transactions, one for every payer, and every member is assigned a unique invoice within the file through the use of a

ROW_NUMBER() command.

P a g e | 77

The subquery counts the members per payer so it can generate a header-level invoice amount for the whole bill.

USP_820X_EXTRACT

This Health Insurance Exchange Related Payments file is similar to the 820 extract above, except it needs to transmit policy

dates. All policy dates are defaulted to 2020-01-01 to 2020-12-31.

USP_824_EXTRACT

This Application Reporting for Insurance specification reports a single Transaction Accepted status for a sample transaction.

USP_834_EXTRACT

This is a sample eligibility extract that uses hard-coded benefit begin and end dates. It transmits subscribers first, followed

by dependents later in the file, and will only transmit the member address if the member is also a subscriber.

USP_835_EXTRACT

This is a sample 835 extract that transmits payment information for all the claim lines present in the sample data. The

extract-stored procedure is a bit complex because of the following factors:

- The Transaction Header must contain a valid sum amount for all the claims within the transaction

- The claims must also transmit accurate total payment information

- The presence of the various Patient Responsibility amounts affects the presence and composition of CAS claim

adjustment segments

The first subquery that generates CHK_PMT_AMT generates the transaction-level payment amount, whereas the second

subquery generates the sums for Claim Charge Amount, Claim Payment Amount, and Claim Patient Responsibility Amount,

as well as the minimum and maximum service dates per claim.

The real complexity lies in the UNION subquery within the CAS_DTL inner join. SERENEDI treats CAS segments as cutouts,

which means repetitions of these segments are encoded vertically as different rows instead of as new columns. To keep

the cutout information related to the claim detail line in the previous row, the NEWROW column is set to 0. This flag

basically means “The only relevant information in this entire database row is the cutout mappings.” This NEWROW column

is used only for flat-formatted extracts.

This means that our 835 extract must keep track of whether it is the first CAS segment (NEWROW = 1) or additional CAS

segments (NEWROW = 0). The CAS_DTL clause establishes this logic: If there is a Claim Line Patient Responsibility amount

above 0 (copay + coinsurance + deductible), then it will emit a CAS*PR segment, fill it with the appropriate information,

and set the NEWROW to 1, and then any remaining difference will be transmitted as a successive CAS*CO segment where

NEWROW is set to 0. If there is no Patient Responsibility amount, then only the CAS*CO segment is transmitted with a

NEWROW set to 1 (it’s the only Claim Adjustment segment).

The CAS*CO will vary depending on whether there is a claim withholding flagged for this claim line. If so, it will be encoded

with a 104 Remittance Adjustment Reason Code, and the remaining balance will be encoded in the same segment with a

reason code of 45.

Note that within the CAS*PR encodings, the deductible, coinsurance, and copays are all assigned discrete slots within the

CAS segment – CAS03, CAS 06, and CAS09 adjustment amounts. For claims with only a copay amount, this could lead to

an invalid CAS segment as it would leave the CAS03 and CAS06 elements empty. As a convenience, SERENEDI will

P a g e | 78

automatically “fill” in these earlier elements if they are left blank and higher elements are filled in – this check is done only

on CAS segments.

At the end of the extract, all lines are sorted by Provider ID, Claim ID, Claim Detail ID, and NEWROW in descending order.

This way, NEWROW = 1 will always occur before NEWROW = 0 rows for additional CAS segments, which is correct.

USP_837I_EXTRACT

USP_837P EXTRACT

The 837 Institutional and Professional extracts share enough in common that they will be discussed here together. Three

different situations are demonstrated by this extract:

1. Subscribers with claims

2. Dependents with claims

3. Both subscribers and dependents with claims

In the first case, these extracts simply omit the 2000C patient loop for subscribers, and the claim and claim lines are

encoded in a straightforward fashion.

In the second case, the extract gives the subscriber information, followed by the 2000C patient loop that describes the

dependent information, followed by the claim.

In the third case, the subscriber information is first transmitted along with associated claims. Then, the subscriber

information is relayed again, and each dependent is transmitted in separate iterations of the 2000C patient loop, followed

by claims for that dependent. The initial HL**22 loop for the subscriber appears only once for all the dependents. This

sequence is described in detail starting on p. 30 of the 837 Institutional Implementation Guide.

One of the design goals of these extracts is to convey these more complex EDI relationships; therefore, all of the above

cases are present in the sample data and the seed file extract. Most of the “heavy lifting” for these requirements is handled

in the large UNION subquery labeled MEM. This layer provides all the raw data used by the 2010BA, 2010BB, and 2010CA

loops. Note that the HL segments are not mapped in this extract; SERENEDI dynamically generates the correct values for

these segments based on the data being projected.

Within the clause itself, the UNION clause provides values for the Subscriber and Patient loops, depending on the

PAR_MEMBER_ID column to decide if the member is a subscriber, and fills in or nulls out all values based on that

information. This is one way to avoid needing excessive CASE WHEN … THEN … ELSE NULL END statements when encoding

loops.

The final subquery generates Claim Charge Amounts and Claim From/To dates that are used at the 2300 Claim header loop

level.

Finally, the ORDER BY statement at the end sorts data by Biller ID, Subscriber ID, Patient ID, Claim ID, and Claim Detail ID,

ensuring the data is emitted in the correct order to create a valid file.

P a g e | 79

SERENEDI Architecture

On the previous page are the core tables for the serenediCore distribution database. Omitted from this diagram are the

database objects related to the Sample Data and extracts, which are covered separately. These objects are used by the

SERENEDI automation system, which is covered in deeper technical detail in this chapter.

As described in the introduction to SERENEDI, this platform was designed to facilitate portability, parallelism, and

projections. Portability is made possible with the specific design choices and environment-related SCORE script commands

P a g e | 80

that are part of the platform. Parallelism is possible due to the highly multi-process nature of the automation environment.

Projections are provided as an aspect of the underlying technology.

SerenediService

When SerenediService is first run on either Windows or a Container, it reads database connection information from the

command line that defines the location of the serenediCore distribution database and pulls in information from the

license.key file related to the licensing level of the SERENEDI installation.

SerenediService then sits in the background and runs the following checks at these intervals:

1. Four times a second, it polls the BIZ_EVENT table using the following query:

 SELECT BE.BIZ_TRIGGER_ID,
 MIN(BIZ_EVENT_ID) BIZ_EVENT_ID

FROM BIZ_EVENT BE
LEFT JOIN
(
 SELECT BE.BIZ_TRIGGER_ID
 FROM BIZ_EVENT BE
 INNER JOIN BIZ_TRIGGER BT
 ON BT.BIZ_TRIGGER_ID = BE.BIZ_TRIGGER_ID
 WHERE PROCESS_BEGIN IS NOT NULL
 AND PROCESS_COMPLETE IS NULL
 GROUP BY BE.BIZ_TRIGGER_ID,
 BT.MAX_PROCESS
 HAVING COUNT(*) > COALESCE(MAX_PROCESS,9999)
) EXCEED
ON EXCEED.BIZ_TRIGGER_ID = BE.BIZ_TRIGGER_ID
WHERE BE.PROCESS_BEGIN IS NULL
AND EXCEED.BIZ_TRIGGER_ID IS NULL
GROUP BY BE.BIZ_TRIGGER_ID
ORDER BY BIZ_EVENT_ID

This query returns the oldest unprocessed event for each trigger that does not exceed the MAX_PROCESS count
for concurrent processes, and sorts the results so that the oldest event from any trigger gets processed first. This
query is re-run if there is worker capacity remaining

Maximum worker count is defined as either 7/8 of the available CPU cores or the licensed core count, whichever
is less. Minimum worker count is defined as 1/4 of the maximum core count, with a minimum of 1. If the number
of outstanding events exceeds the minimum worker count, new workers are launched up to the maximum worker
count – otherwise, only the minimum worker count is maintained.

If a worker executes an event that exceeds four hours of execution time, it is forcibly terminated and the event is

marked TIMEOUT FAILURE in the SUMMARY column.

2. Four times a second, SerenediService checks the Trigger Scan process. If it is not running, it is relaunched.

3. Every 1.5 seconds, SerenediService checks for unprocessed data shuttle requests with this query:

SELECT COUNT(*) FROM SYS_MSQ WHERE Q_STATE='U' AND MSQ_TYPE = 'DATA_SHUTTLE'

 If this value is nonzero and the data shuttle process is not running, it is relaunched.

4. Every 1.5 seconds, SerenediService checks to see if the SERENEDI Studio process is running. If not, and the

serenediStudio.dll binary is found in the C:\serenedi\bin directory, it is relaunched.

P a g e | 81

SerenediService is designed to run in the background continuously – for this reason, it is solely concerned with launching

child processes. The SerenediService process ID is communicated to all child processes; if SerenediService is terminated,

all child processes will self-terminate as soon as possible.

SERENEDI Command Line Arguments

SERENEDI Service

The command line arguments for the SERENEDI Service give end-users the ability to tailor the functionality of SERENEDI

for specific use-cases. Normally, the command line will look something like this:

C:\serenedi\bin\serenedi.exe SERVER STUDIO SC H:C:\serenedi MSSQL:"Data Source=(local);Database=serenediCore;User

id=sa;Password=strongPass1;TrustServerCertificate=true;"

These parameters are the default installation, assuming the initial install folder was C:\serenedi. It can be customized as

follows:

STUDIO – This is an optional parameter that directs SERENEDI to listen to socket 5000 for local web browser requests. If

you’d like to disable the STUDIO interface, just omit this parameter.

H:<Home Path> - This specifies the home folder for SERENEDI.

MSSQL: “<MSSQL Database Connection String>” – This is the database connectivity string for SERENEDI and directs it to

connect to the serenediCore distribution database.

PIPE:<Pipeline Path> - This optional parameter is an override to the pipeline folder.

NOSHUTTLE -This optional parameter disables Data Shuttle processes from being launched, and will completely shut down

the data shuttle functionality of SERENEDI. This can be useful in certain real-time data processing scenarios.

TICK:<Service Tick Milliseconds Interval> - This is an override to the service polling interval, which defaults to polling triggers

every 1000 milliseconds. Lowering this value too low could have severe consequences by hammering the serenediCore

database with too many consecutive queries; raising this value too high will reduce the responsiveness of the trigger

system. This enables SERENEDI to be used for certain edge-case real-time scenarios.

SERENEDI Command Line

The SERENEDI product covers two cases where users can execute the serenedi.exe command line directly. They are: 1)

checking the license information, and 2) Executing the REPL environment for non-production test and validation purposes.

Checking the License

In the serenedi\bin folder, execute the following:

serenedi.exe LICENSE

This will provide information about the licensee, license effective data, and number of cores. If the database connection

string is provided (see MSSQL above), this command will also return the total number of events in the BIZ_EVENT table.

REPL

serenedi.exe REPL SC H:C:\serenedi MSSQL:”Data Source=…”

P a g e | 82

This is a method to open a simple command-line shell that can execute both PowerShell Core commands as well as

SERENEDI-specific commands. This command should be used by a developer testing commands for development purposes

only; it should not be used for production processes. This shell does not allow for logic branching commands; the normal

way to develop new SCORE scripts is via Visual Code with the PowerShell Core extension (see installation instructions for

more information on this).

Worker Process

Worker processes are launched by the SerenediService when there is work to be done. They operate in parallel with other

worker processes. They are designed to be short-lived: they process a single, predetermined event and then exit.

If the event does not complete within one hour, it is assumed to be hung and it terminated by the SERENEDI Service and

the SUMMARY field will be updated to ‘TIMEOUT FAILURE’.

There is a limit to the amount of simultaneous worker processes SERENEDI launches; this is predetermined by both the

licensing level as well as the CPU resources available. Normally, pending events are assigned to workers evenly among the

triggers, so that each trigger will be assigned some resources and not be hung up when a large amount of events get added

to the serenediCore database. However, triggers can be assigned a “MAX_PROCESS” integer that limits the number of

parallel Worker Processes that can be launched at any single time.

Worker Processes can also be assigned to special events called Immediate Mode events that are unbound to a trigger.

These special events are generally used to call “bootstrap” operations on SCORE scripts. In this case, the BIZ_TRIGGER_ID

for the event will be null, and the EVENT_DATA4 column will store the file path of the SCORE script to be executed. In this

case, only the first three arguments are passed on to the script.

If there is a trigger associated with this event, then the SCORE script associated with that event is executed and all four

arguments are passed to the script.

Trigger Scan

The Trigger Scan functionality is executed periodically to scan all trigger criteria that are a) enabled and b) have a

POLL_INTERVAL greater than 0.

Each row of the result set is processed as follows:

1. If the LAST_POLL_DT column is null or is set to a value that is older than the number of seconds stored in the

POLL_INTERVAL column, then this trigger is eligible to be scanned.

2. After the trigger is found to be eligible, the trigger scan will update LAST_POLL_DT by adding POLL_INTERVAL

seconds to it. If the LAST_POLL_DT column is null, it is set to the current date/time.

3. If the TRIGGER_TYPE is set to LOCAL_UPLOAD, LOCAL_ARCHIVE, or SQL, control is passed to one of these handlers.

Upload Triggers

1. If an SQL filter is defined in the upload trigger, that is checked before anything else. In this way, developers can

limit execution to certain days or times using standard SQL date/time expressions – when an SQL filter is set, it

must return an integer ‘1’ value for the trigger to execute. If the SQL filter is not set, or if the SQL filter expression

resolves to numeric 1, execution continues.

P a g e | 83

2. The Initial directory is defined in the FOLDER_INIT column. Upload triggers generate events when the Trigger Scan

process is able to move files from the Initial directory to the Source directory defined in the FOLDER_SRC column.

If file filters are set, they operate in the following way:

a. When a single file filter is defined, this limits what files are scanned in the Initial directory. For example, a

*.837 filter will ignore all files except those ending in the .837 filename extension.

b. When multiple file filters are defined, they act to define file sets where the wildcard expressions must be

matched on all filters. Even when a match is found, only the file matching the first filter will be used to

fire the event.

Example: Two filters are defined for this trigger: *.837 and *.HDR. Five files are present in the

Initial directory: ABC.837, DEF.837, GHI.837, ABC.HDR, and DEF.HDR. This results in two files that

will generate events: ABC.837 and DEF.837. The *.HDR files, not being the first defined filter, do

not generate events, but does prevent GHI.837 from triggering an event because it does not form

a complete file set.

3. If a TIMESTAMP filter is set on this event, it is used to evaluate a timestamp expression that is then added to the

end of the filename when it is moved to a new location.

4. Files fulfilling all of the previously established criteria are moved to the directory as defined in the Source directory.

If a file already exists in the Source directory, or if the file fails to be moved, it is assumed to be locked in some way

and does not generate an event. Files are sorted based on their file size, with the largest files sorted first.

5. For all files satisfying the above criteria, an event is generated with the fully pathed filename as EVENT_ARG1 for

each one.

Archive Triggers

1. If an SQL filter is defined in the archive trigger, that is checked first as defined in Step 1 for Upload triggers.

2. The sole directory used for Archive triggers is the Init directory defined in the FOLDER_INIT column of the trigger.

All files present in the directory are scanned; if one or more file filters is set for this trigger, they are evaluated in

exactly the same fashion as steps 2a and 2b defined for the Upload trigger above.

3. The bare filenames that result after step 2 is evaluated are compared with the results of this query:

SELECT EVENT_CRIT FROM BIZ_EVENT BE INNER JOIN BIZ_TRIGGER BT ON BE.BIZ_TRIGGER_ID =
BT.BIZ_TRIGGER_ID AND BT.IS_ENABLED=1 AND BT.BIZ_TRIGGER_ID=<<BIZ_TRIGGER_ID>>

4. Files that do not match are flagged as new and inserted as events. Files are sorted based on their file size, with the

largest files sorted first. Within the event, the EVENT_CRIT column is the fil ename without paths, whereas

EVENT_DATA1 is the fully pathed filename.

SQL Triggers

1. For SQL Triggers, only the SQL filter is checked to determine if the event is fired. If the SQL evaluates to an integer

‘1’, an event is spawned.

Data Shuttle

The data shuttle is launched by SerenediService when there are unfulfilled data shuttle requests. The shuttle has a unique

responsibility in the SERENEDI automation system to drive the BIN system, specifically flat and HDB data storage. Before

the data shuttle can operate, the data needs to be “staged” properly so the shuttle can do its job. This means initially

P a g e | 84

sending the data to one or more temporary tables on the database server and database that will be the home for that

data. Because SERENEDI creates new columns spontaneously depending on the source data, it has to establish very tight

control of when data is actually inserted into the destination tables, thus the need to stage the data in temp tables first.

The automation system acts in slightly different ways depending on whether the data being stored is a single flat table or

a multi-table HDB insertion.

When SERENEDI worker processes run SCORE scripts and execute the sapi-FlatForceMergeToBIN or sapi-FlatMergeToBIN

commands, they perform these actions to stage the data for the shuttle:

1. A new BIN ID is generated by the distribution database that uniquely identifies the data stored with this command.

2. A set of new records is created in the serenediCore SYS_MSQ table as follows:

a. Flat Merge operations: Q_ACTIVITY = ‘FLAT_MERGE’, Q_STATE = ‘O’

b. Flat ForceMerge operations: Q_ACTIVITY = ‘FLAT_FORCEMERGE’, Q_STATE = ‘O’

c. MSQ_TYPE = ‘DATA_SHUTTLE’

d. SRC_TBL receives the temporary table name

e. DST_TBL receives the destination table name

f. BIN_ENDPOINT_ID, if null, is set to the serenediCore database. If set, all temp tables and merge operations

will be performed on the specified endpoint database.

g. If the flag NO_MSG is set, no messages will be generated for column spawning operations (Force Merge)

or column not found (Merge) conditions.

3. The data is bulk stored to the destination SQL database as a single temporary table with a table name beginning

with T_<Event ID>_<10-digit random number. From the perspective of the database servers, these tables do not

have any special designation as temporary tables.

4. After the table is successfully inserted, the SYS_MSQ entry for this table is changed from having a Q_STATE of O to

a Q_STATE of U. This marks the table as ready for the data shuttle.

When SERENEDI worker processes run the SCORE script commands sapi-HKeyMergeToHDB and sapi-

HKeyForceMergeToHDB, they commit these actions:

1. A new BIN ID is generated by the distribution database that uniquely identifies the data stored with this command.

2. Temp tables are generated in the distribution database for each loop represented in the HKey register. They follow

this naming convention: T_<Event ID>_<1-Based Increment>_<10-digit random number>. From the perspective of

the database server, these tables have no specific classification as temporary tables.

3. If all the tables were inserted successfully, a single transaction inserts a SYS_MSQ for each table that was

generated:

a. HKey Merge operations: Q_ACTIVITY: ‘FLAT_MERGE’, Q_STATE=’U’

b. HKey ForceMerge operations: Q_ACTIVITY: ‘FLAT_FORCEMERGE’, Q_STATE=’U’

c. MSQ_TYPE = ‘DATA_SHUTTLE’

d. SRC_TBL receives the temporary table name

e. DST_TBL receives the destination table name

f. BIN_ENDPOINT_ID, if null, is set to the serenediCore database. If set, all temp tables and merge operations

will be performed on the specified endpoint

g. If the flag to suppress schema messages is set, ARG_03 will be set to NO_MSG.

P a g e | 85

h. The SPEC_CD and LOOPNM are set for each loop table in the dataset.

The background data shuttle service is responsible for quickly and reliably moving the data from the temporary data staging

tables to the final destination tables. For “ForceMerge” requests, it also has to manipulate the destination table schema

so that all source schema data elements have a home in the destination schema. This data staging system also ensures

that database worker threads are not overwhelmed trying to make dozens of simultaneous table inserts into a single

destination table, which can lead to lock contention and dropped database connections. By having a single background

process handle these responsibilities, data is “shuttled” to the BIN tables reliably and without locking contention.

If the data shuttle is able to complete a request, the SYS_MSQ for that entry is removed completely. In this way, the

SYS_MSQ acts as a temporary work table. If there was an error, the data shuttle will either retry the operation or update

the Q_STATUS to ‘Z’, which is an unrecoverable error. All hierarchical operations work in transactions, so either all data for

all loop tables is inserted into the destination tables, or none of them are.

To ensure the integrity of the SERENEDI BIN system, here are some important notes:

1. Do not use cursors on the BIN tables when there are active data operations

a. Cursors lock the schema during their operation, which will prevent Force Merge operations from working

2. Be careful with any manual schema changes

a. If you alter the schema during a data shuttle operation, you can cause the data shuttle to crash or have

unpredictable results

b. If you add a column with an incorrect data type, this will cause the data shuttle to error on all inserts

occurring with that column

BIN_LOG

This table is the key reference point for the entire BIN system – SERENEDI’s method of storing a diverse set of information

associated with EDI files. The BIN system can store Flat database stores and HDB (hierarchical database) stores. Each item

committed is referenced with a single BIN_LOG_ID, often referred to as the BIN ID in this manual. The flat and hierarchical

data stores must be accessible to normal SQL queries and can be stored locally in the serenediCore database or externally

in another database. The location of the item is stored along with the BIN_LOG_ID reference so that when Data Fetch

commands are executed, only the BIN_LOG_ID is needed to retrieve the item.

In most cases, the commands that store BIN items to the Flat and HDB stores do not usually wait for the item to be

completely committed before the command concludes. That’s because the data first immediately goes to a temp table in

the serenediCore database before both the schema and data are merged to an existing data store in a way that is scalable

across a large number of simultaneous transactions. The BIN_DONE_DT field is populated when the data for that BIN entry

is fully committed and ready to be queried; while this field is null, you can assume that the data is not available to be read

by your data consumer applications.

SERENEDI does not have any premade BIN tables for data to go to initially. Instead, when all default parameters are used,

SERENEDI creates them dynamically as new EDI specifications are encountered.

P a g e | 86

Field Name Data Type Purpose

BIN_LOG_ID Integer (PK) This is the unique primary key for each BIN_LOG entry. It is the single
point used to load in a BIN entry and is stored externally as a foreign key
by all data stores.

BIN_FILENAME Varchar(200) This is the filename of the item that created the BIN entry.

BIN_RECV_DT DateTime (not null) This is the timestamp for when the BIN entry was created.

BIN_DONE_DT DateTime This is the timestamp for when the BIN entry data was committed to the
database and became available for querying.

BIN_TYPE Integer (not null) 102 – This entry references an HDB set of data tables. The BIN_TABLE will
contain a prefix that goes before each of the Loop names. This increases
both the difficulty of accessing the EDI data and the storage efficiency.

103 – This entry references a Flat data table. By default, it will reside in
the serenediCore database and be named BIN_5010_837I (for a 5010 837
I file, in this example). This data is the least efficient for storage, but the
easiest to access.

BIN_STATUS Varchar(20) COMPLETE – The BIN entry has completely finished processing.

PENDING – The BIN entry is still being processed.

ERROR – There was a critical error while processing the BIN entry.

BIN_ENDPOINT_ID Integer (FK) This is an optional foreign key to the BIN_ENDPOINT table. When present,
it signifies that the BIN entry is residing outside the default serenediCore
database in a different database or server.

BIZ_EVENT_ID Integer (FK) When populated, this indicates the BIZ_EVENT_ID foreign key of the
event that created this entry.

BIN_TABLE Varchar(200) This is mandatory for HDB and Flat entries and is the data table name
where the BIN entry is stored.

BIN_ENDPOINT

This table stores references to other databases and database servers. Furthermore, it sets up “aliases” that can be used

during SCORE workflow steps as shorthand for storing EDI-related objects in the BIN system.

Field Name Data Type Purpose

BIN_ENDPOINT_ID Integer (PK) This is the primary key to the table.

BIN_CNNSTR Varchar(2000)
(not null)

This is the Connection String used for opening the connection. The exact
format of the string depends on the database provider used.

BIN_DBTYPE Varchar(20)
(not null)

This represents the database server used for the database.

SQLSERVER – MS SQL Server (version 2012 or above is supported)

BIN_ENDPOINT_ALIAS Varchar(100) This is the alias used for this database connection.

UPDT_DT DateTime (not null) This is the creation date or update time of the connection.

P a g e | 87

BIZ_TRIGGER TABLE

This is the core table that drives the generation of events from the SERENEDI automation system. See the “Events” chapter

for more information about how the values in the table’s fields drive the generation of new events.

Field Name Data Type Purpose

BIZ_TRIGGER_ID Integer (PK) This is the primary key for the table. It is auto-generated upon record
insertion.

TRIGGER_NAME Varchar(200) This is the name of the trigger. If the trigger is grouped with other triggers as
part of a business process, they should share a common prefix to make it
clear that the process is associated with a group.

SCRIPT Varchar(200) This is the path and filename to the SCORE script executed by the events
generated by this trigger.

TRIGGER_TYPE Varchar(20) This is defined as follows:

SQL: An SQL query is executed during the trigger polling; a 1 integer result
from the SQL fires the event. The SQL is defined in the FIRE_LOGIC column.

PASSIVE: The trigger will not actively fire events, but is used to link events to
a SCORE script.

LOCAL_UPLOAD: This trigger will create new events for every file that is 1)
Placed in the FOLDER_INIT folder and 2) can be successfully moved to the
FOLDER_SRC folder.

LOCAL_ARCHIVE: This trigger fires for every file that is present in the file
system but not present as an event in the BIZ_EVENT table.

FOLDER_INIT Varchar(200) This is used for both LOCAL_UPLOAD and LOCAL_ARCHIVE triggers. For
LOCAL_UPLOAD triggers, the file starts here and then is moved to the
FOLDER_SRC. For LOCAL_ARCHIVE triggers, only this folder is used.

FOLDER_SRC Varchar(200) This is used by the LOCAL_UPLOAD triggers as the destination to move files
to prior to firing the trigger. Syntax in the FIRE_LOGIC column is available to
post-fix a timestamp and give a unique identifier to files that have the same
name.

SFTP_SESS_ID Integer (FK) This is a foreign key to the SFTP Session table, used to define a SFTP Mirror
triggers. These triggers do not spawn any events of their own – instead, they
trigger SFTP Mirror operations via the pipeline system. The local directory is
specified in FORCE_ARG3, and the remote directory is specified in
FORCE_ARG4. The LAST_POLL_DT and POLL_INTERVAL, in turn, are used to
track when the SFTP server is polled.

FIRE_LOGIC Varchar(4000) This is a pipe-delimited list of filters. TIMESTAMP applies only to UPLOAD
trigger types. SQL is used for all triggers, and FILTER is used only for UPLOAD
and ARCHIVE triggers. More information is available in the “Triggers” chapter.

IS_ENABLED Integer When this value is 1, the trigger is enabled. Any other value will disable the
trigger.

LAST_FIRE_DT DateTime This defines the last time the trigger fired to create events.

LAST_POLL_DT DateTime The defines the last time the trigger was polled.

POLL_INTERVAL Integer (not null) This is the number of seconds between polls. Setting this to a value below 1
completely disables the trigger.

MAX_PROCESS Integer This is the limit on the number of active events that can process a trigger at
the same time. Setting it to 1 ensures that any events created by this trigger

P a g e | 88

will be serial – the next event will not be fired until the previous one is
completely finished.

FORCE_ARG1 Varchar(200) When specified, these values will set the EVENT_ARG1 to EVENT_ARG4
columns in the newly created trigger to a fixed value. This is primarily useful
when you’d like to create a single SCORE script that handles multiple triggers
or business processes. By forcing a fixed value into one of the arguments, the
SCORE script can branch execution and assign dedicated handlers to each
process based on the argument. In this way, a SCORE script is able to
orchestrate a full business system as opposed to handling an individual
functional process.

For SQL triggers, FORCE_ARG4 will be used as a BIN Endpoint Alias to allow
the SQL defined in the FIRE_LOGIC column to be executed in external
databases.

FORCE_ARG2 Varchar(200)

FORCE_ARG3 Varchar(200)

FORCE_ARG4 Varchar(200)

BIZ_EVENT TABLE

One row in the BIZ_EVENT table represents one unit of work that is scheduled to be farmed out to a number of parallel

worker processes. Most of the time, this unit of work is centered around a single file moving through the EDI pipeline via

the Upload or Archive triggers, but the system is flexible enough to do many other things, triggered actively via SQL triggers

or passively via external inserts to this table.

Events are “owned” by worker processes as described in more detail earlier in this section, carrying specific arguments to

the SCORE scripts associated with the trigger that generated the event. When large groups of events are triggered by a

large number of files being processed at once, SERENEDI will attempt to process the largest files first. This helps reduce

the overall time to complete the workload.

This system is also flexible enough to operate without an associated trigger – if the BIZ_TRIGGER_ID value is null, the

EVENT_DATA4 column is treated as the local filename of a SCORE script to execute. This feature enables new SCORE scripts

to bootstrap and prepare the local environment.

The Event Date column indicates when the event was created, the Process Begin column shows when a worker process

started work on the event, and Process Complete indicates when the worker process was completed. If the event is

completed without critical errors, it is flagged as SUCCESS in the Summary column.

To learn how to debug a SCORE script while executing a specific event, see the Visual Code Installation section in the

Installation chapter.

Field Name Data Type Purpose

BIZ_EVENT_ID Integer (PK) This the unique primary key of the EVENT. It is referenced by the BIZ_MSG
table, the SYS_MSG table, and the BIN_LOG table.

PROCESS_BEGIN DateTime This is the timestamp for when a worker process took ownership of this
event and commenced work on it.

PROCESS_COMPLETE DateTime This is the timestamp for when the worker process completed the event.

EVENT_DATE DateTime This is the timestamp for when the event was created.

EVENT_CRIT Varchar(4000) This is the event criteria, generally the filename or some other string that
fired the triggering mechanism.

P a g e | 89

EVENT_DATA1 Varchar(1000) These event data fields provide data about the feeds to the SCORE script
linked to the trigger that created this event. Alternatively, if the event is
spawned with a null BIZ_TRIGGER_ID, then SERENEDI will check the field
EVENT_DATA4 if it references a file. If so, then it’s assumed this is a SCORE
script executed in immediate mode, which does not require a trigger, and
EVENT_DATA1, 2, and 3 are passed to this script during execution.

EVENT_DATA2 Varchar(1000)

EVENT_DATA3 Varchar(1000)

EVENT_DATA4 Varchar(1000)

SUMMARY Varchar(200) This is generally either SUCCESS when an event completes without errors,
or CRITICAL FAILURE if an error occurred when executing the SCORE script
for this event.

SOURCE_NM Varchar(1000) This indicates the type of trigger that created the event. The three types
are LOCAL_UPLOAD, LOCAL_ARCHIVE, and SQL.

BIZ_TRIGGER_ID Integer This is a foreign key reference to an item in the BIZ_TRIGGER table. If it is
not supplied, then the event is executed in immediate mode.

BIZ_MSG

This table stores all messages generated in the course of processing events. Messages are not inserted into the table as

they occur; instead, once the SCORE script for an event is completed, the messages are inserted in the order they were

generated and tied to the BIZ_EVENT_ID.

Field Name Data Type Purpose

BIZ_MSG_ID Integer (PK) This is the unique primary key for the message.

BIZ_EVENT_ID Integer (not null) This is the foreign key to the BIZ_EVENT_ID that spawned this message.

ORIGIN Varchar(50) This is a short string that denotes the origin of the message. Possible
values are:

DATA_SHUTTLE – This denotes fields that were added by the BIN system
or flagged as not present.

USER – This indicates a message generated by a SCORE script and given
the default ORIGIN.

For the syntax error messages, each “family” of errors will have a
different Origin. The SCORE command documentation will more
thoroughly cover those errors.

MESSAGE Varchar(400) This is the primary point of communication for the message. It does not
need to be too specific; it can rely on the following data fields to add
information about what triggered this message.

MSGDATA_STR Varchar(400) This is string data for the message.

MSGDATA_NUM1 Integer This is the first integer data for the message. If the message is a segment
syntax error, this will store the segment index within the file of where the
error occurred.

MSGDATA_NUM2 Integer This is the second integer data for the message.

IS_ERROR Integer This is a flag, either 1 or 0, that indicates whether this message should be
considered an error.

MSG_DT DateTime (not null) This is the timestamp for when the message was created.

P a g e | 90

SFTP_SESS

This table stores everything about a SecureFTP session, including sites, usernames, and passwords. It is used by the SFTP

commands in the SCORE scripting system to centrally warehouse all the information related to SFTP sessions. If a

fingerprint is received from an SFTP server that does not match a value set in this table, the command will fail with an error

message.

Field Name Data Type Purpose

SFTP_SESS_ID Integer (PK) This is the unique primary key to the SFTP session.

PARAMS Varchar(2000) This is a comma-delimited list of options that direct the behavior of the
SFTP session. They are:

BINARY – Enforces a binary transfer mode during file operations.

ASCII – Enforces an ASCII transfer mode during file operations.

LOCAL_MIRROR – For Directory Mirror operations, this option directs
new remote files to be downloaded to the local file system. If neither
LOCAL_MIRROR nor REMOTE_MIRROR is supplied, this is the default
mode of operation.

REMOTE_MIRROR – For Directory Mirror operations, this option
overrides the default Local Mirror setting and uploads files found on the
local folder to the remote folder.

FILE_MOVE – This option removes the source file after it is successfully
uploaded or downloaded to the destination system.

HOST_NM Varchar(200)
(not null)

This is either the IP address or host name of the SFTP Site.

USER_NM Varchar(100)
(not null)

This is the username credential for the session.

PASSWRD Varchar(100)
(not null)

This is the password for the session.

FINGERPRINT Varchar(200) This is the remote site fingerprint. It is set automatically when first
connecting to a remote SFTP site. Any subsequent connection will require
the same fingerprint – if any changes are made, the connection will not
go through and an error message will be logged. If you need to reset the
fingerprint, it can be manually set to the string VOID. The next time this
SFTP connects to the remote server, the fingerprint will be regenerated
from the remote site.

LOG_DIR Varchar(200) This specifies a local file system directory that will be used to generate
plain-text logs of SFTP operations as they occur.

PRIVKEY_FILE Varchar(200) Certain SFTP servers require public/private keys. This file refers to the
local client’s private key file. To be considered valid by the SSH.NET library
used for SFTP communications, it must be in plain text and start and end
with the following strings:

-----BEGIN RSA PRIVATE KEY-----

-----END RSA PRIVATE KEY-----

PRIVKEY_PASS Varchar(200) If a passphrase is needed to unlock the Private Key file, supply it in this
column.

P a g e | 91

SYS_MSQ

The function of the SYS_MSQ table is explained in the earlier SERENEDI Architecture section about the data shuttle. It is a

temporary workspace that enables the background data shuttle service to complete data storage requests. When the data

storage request is successfully completed, the SYS_MSQ row is deleted. Only in the event of a critical failure will the row

be left behind with a Q_STATE status of Z. If the row is stuck in a state of O, it means the Flat data could not be stored to

the destination database as a temp table. If the row is stuck in a state of U, either the data shuttle is not running or it

cannot access the distribution database.

When no data shuttle requests are ongoing, this table should have no rows, and letting Z error records accumulate in this

table could slow down the overall performance of the system.

Field Name Data Type Purpose

MSQ_ID Integer (PK) This is the unique primary key of the MSQ record.

BIZ_EVENT_ID Integer (FK) This links the request to the event that spawned the data request. If a
problem occurs, you can use this to analyze the root cause.

BIN_ID Integer (FK) This is a foreign key to the BIN_LOG table, and specifies the BIN_ID
this operation is inserting to the destination table.

BIN_ENDPOINT_ID Integer If populated, this shuttle operation resides on the database defined
within the BIN_ENDPOINT table.

MSQ_TYPE Varchar(20) This value is hard-coded as DATA_SHUTTLE. It is open to future
expansion.

Q_POST_DT DateTime If there is a critical error, this is the time the record errored out. This
is the only time that SYS_MSQ records are persisted for any length of
time.

Q_ACTIVITY Varchar(50) This has two possible values:

FLAT_MERGE

FORCE_FLATMERGE

The first value is a request to merge the data source from SRC_TBL to
DST_TBL without making schema changes. If the NO_MSG flag is not
set, it will create messages for any fields in the source it can’t find in
the destination. If this is set to FORCE_FLATMERGE, it is a request to
merge the data source to the destination with schema changes. This
way, all the data in the source can be inserted into the destination.
New columns will be logged unless NO_MSG is set.

SRC_TBL Varchar(200) This specifies the source of the shuttle request, and is generally a temp
table beginning with ‘T_’

DST_TBL Varchar(200) This specifies the destination of the shuttle request.

SPEC_CD Varchar(2) This is the two digit specification code of the specification used for this
merge/ force merge operation.

NO_MSG Varchar(1) This is a flag to indicate if messages are to be suppressed.

LOOP Varchar(30) This is used only for hierarchical operations, and indicates the loop
short name used for the merge / force merge operation.

Q_STATE Varchar(1) This is a single-character status code:

P a g e | 92

O – A temp Flat transfer is beginning but not finished

U – HDB/Flat data table is ready for transfer to the destination

Z – A critical error occurred while processing this request

Sample Data Tables

The Sample Data Tables illustrated above store mock data related to claims, members, and providers so they can provide

the raw data needed to create the seed files in the sample extracts. These are covered further in the “Creating Outbound

Transactions” chapter.

SAMPL_CLAIM

This table represents 337 claims tied to both members and subscribers, allowing the 837 extracts to illustrate more

complex relationships between subscribers and members when encoding the claims. This table is also used for encoding

835 files.

Field Name Data Type Purpose

CLAIM_ID Integer (PK) Primary key to the Sample Claim table

MEMBER_ID Integer Foreign key to the SAMPL_MEMBER table

PT_CTL_NR Varchar(300) Patient control number

TOT_CLM_CHG_AMT Numeric(18,2) Total claim charge amount

POS_CD Varchar(300) Place of service code

CLM_FREQ_CD Varchar(300) Claim frequency code

SIG_IND Varchar(300) Signature indicator

PLAN_PART_CD Varchar(300) Plan participation code

BEN_ASGT_CRT_IND Varchar(300) Benefits assignment indicator

RLS_NFO_CD Varchar(300) Release of information code

CLM_NR Varchar(300) Claim number

PRIN_DIAG Varchar(300) Principal diagnosis

DIAG02 Varchar(300) Secondary diagnosis

P a g e | 93

DIAG03 Varchar(300) Tertiary diagnosis

ADMIT_DT Varchar(300) Admission date

PROF_ID Integer Foreign key to the SAMPL_PROFESSIONAL table

SAMPL_CLAIM_DTL

This table contains claim lines tied to the claims. For encoding to 835 files, the patient responsibility amounts (copay,

coinsurance, deductible, withholding) are used for encoding CAS adjustment segments.

Field Name Data Type Purpose

CLAIM_DTL_ID Integer (PK) Primary key to the Claim Detail table

CLAIM_ID Integer Foreign key to the SAMPL_CLAIM table

LINE_SEQ Integer Line sequence

HCPCS_CD Varchar(300) Procedure code

MOD01 Varchar(300) Procedure modifier 01

MOD02 Varchar(300) Procedure modifier 02

DESCR Varchar(300) Description

CHG_AMT Numeric(18,2) Line charge amount

PMT_AMT Numeric(18,2) Line payment amount

UNITS Numeric(18,2) Units

DIAG_CD_PTR Varchar(300) Diagnosis code pointer

SVC_DT DateTime Service date

COPAY Numeric(18,2) Patient copay

COINS Numeric(18,2) Patient coinsurance

DEDUCTIBLE Numeric(18,2) Patient deductible

WITHHOLD Numeric(18,2) Patient withholding

SAMPL_HEADER

This contains sample data used in the outer envelopes of all the extracts.

Field Name Data Type Purpose

HDR_ID Integer (PK) Primary key to the Header table

HDR_NAME Varchar(300) Header name

ISA_ISA02_NO_AUTH_NFO Varchar(300) ISA envelope map

ISA_ISA04_PASSWD Varchar(300) ISA envelope map

ISA_ISA06_MUTLY_DEF Varchar(300) ISA envelope map

ISA_ISA08_MUTLY_DEF Varchar(300) ISA envelope map

ISA_ISA11_REPTN_SEP Varchar(300) ISA envelope map

ISA_ISA12_ICN_VERS_NR Varchar(300) ISA envelope map

ISA_ISA13_ICN Integer ISA interchange control number

ISA_ISA15_ICN_USG_IND Varchar(300) ISA envelope map

ISA_ISA16_COMP_ELE_SEP Varchar(300) ISA envelope map

GSHDR_GS02_APP_SNDR_CD Varchar(300) GS envelope map

GSHDR_GS03_APP_RCV_CD Varchar(300) GS envelope map

P a g e | 94

GSHDR_GS06_GCN Integer GS control number

SAMPL_MEMBER

This table defines 170 members/subscribers using completely random information. The relation code is D for dependent

(member) or P for primary (subscriber). Dependents are tied to the parent record via the PAR_MEMBER_ID column.

Field Name Data Type Purpose

MEMBER_ID Integer (PK) Primary key to the Member table

PAYER_PROVIDER_ID Integer Foreign key to the SAMPL_PROVIDER table

BILLER_PROVIDER_ID Integer Foreign key to the SAMPL_PROVIDER table

RELATION Varchar(300) Relation code

MEM_ID Varchar(300) Plan member identification code

SSN Varchar(300) Social Security number

LAST_NM Varchar(300) Last name

FIRST_NM Varchar(300) First name

RES_ADDR Varchar(300) Residential address

RES_CITY Varchar(300) Residential city

RES_STATE Varchar(300) Residential state

RES_ZIP Varchar(300) Residential ZIP

DOB Date Date of birth

GENDER Varchar(300) Gender

LANG Varchar(300) Language

PAR_MEMBER_ID Integer Foreign key to SAMPL_MEMBER table (Parent record)

SAMPL_PROFESSIONAL

This table is a simple list of six professional providers. Their last names are all types of rocks.

Field Name Data Type Purpose

PROF_ID Integer (PK) Primary key to the Professional Table

PROF_LNAME Varchar(300) Last name

PROF_FNAME Varchar(300) First name

PROF_NPI Varchar(300) NPI

SAMPL_PROVIDER

This table contains six business-level entity providers.

Field Name Data Type Purpose

PROVIDER_ID Integer (PK) Primary key to the Provider Table

PROV_ORG_NM Varchar(300) Organization name

PROV_LAST_NM Varchar(300) Last name

PROV_FIRST_NM Varchar(300) First name

PROV_NPI Varchar(300) NPI

TAX_ID Varchar(300) Tax ID

BIZ_ADDR Varchar(300) Address

P a g e | 95

BIZ_CITY Varchar(300) City

BIZ_STATE Varchar(300) State

BIZ_ZIP Varchar(300) ZIP

BIZ_PHONE Varchar(300) Phone

Appendix A: SerenediAPI Workflow Reference

Serenedi is driven by PowerShell Core cmdlets. This cross-platform scripting solution is based on .NET Core and has a track

record going back many years. PowerShell Core is easily extensible with external libraries, which makes it an ideal scripting

solution for an integration platform.

Global Variables

When an event is fired, these variables will be populated prior to running the script:

Variable Name Purpose

folderSrc Source Folder

eventID Biz Event ID of the current event

eventCrit Event Trigger Criteria

eventData1 Argument Data 1

eventData2 Argument Data 2

eventData3 Argument Data 3

eventData4 Argument Data 4

mainScript Main Process Execution Script

P a g e | 96

BIN COMMANDS

sapi-FetchBinState
This command is used to interrogate the state of a BIN item. It

provides the type of the BIN item and tells whether it is ready for

use.

If the BIN_ID is unknown, it returns UNKNOWN_BIN.

If the BIN has not finished writing, one of these values will be

returned:

HKEY_PEND

FLAT_PEND

UNKNOWN_PEND

If the BIN has completed being stored, one of these values will be

returned, depending on the type of the BIN item:

FLAT

HKEY

UNKNOWN

Parameter Value

-BinId (int, mandatory) Provide the BIN ID of the item to be investigated.

sapi-FlatForceMergeToBIN
This command will merge the loaded Flat table to the BIN system.

If mappings are present in the Flat that are not in the destination

BIN schema, the columns will automatically be added to the

destination schema. Messages for these new files will be added to

the message log unless the SuppressSchemaMsg flag is set.

The return value from this command is an int of the BIN ID.

ERRORS

WFDS0010 DataShuttle service not processing queued
request – 20 minute timeout

WFDS0020 DataShuttle critical error while servicing
request

WFDS0030 Critical error creating temp table

Parameter Value

-Table (string, optional) When specified, this will override the default destination BIN table

with a provided table name.

P a g e | 97

-Filename (string, optional) When provided, this will be placed in the BIN_FILENAME column

of the new BIN entry.

-SupressSchemaMsg (boolean, optional) If set to True, SERENEDI will not generate message logs for new

columns that are not present in the destination Flat schema.

-BinEndpointId (int, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint ID.

-BinEndpointAlias (string, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint Alias.

-NoWait (boolean, optional) The default behavior of this cmdlet is to wait for the time it

normally takes for the data to be inserted into the destination Flat

table by the background data shuttle process. If this value is set to

True, the script will continue execution.

EXAMPLE

sapi-SegPoolFromFile -Filename ‘C:\serenedi\shared\seed\seed_837p.txt’
sapi-SegPoolToHKey
sapi-FlatFromHKey
$binId = (sapi-FlatForceMergeToBIN -Filename $eventData1 -NoWait $true)

sapi-FlatFromBIN
This is a general database command to load the Flat register. If a

BIN ID is supplied, the Flat will be retrieved from the BIN system. If

a table is supplied, the SQL in the table parameter will be executed

and the Flat will be retrieved from that result instead. Note that

“table” here can also mean an SQL View or an SQL Stored

Procedure with parameters.

ERRORS

BINX0085 Referenced BIN ID does not exist in the BIN_LOG
table.

BINX0080 Cannot load Flat from this BIN ID: It is not
storage in FLAT format.

BINX0120 Critical error during Fetch_BIN_Flat. Make sure
that the SQL returns a valid dataset.

Parameter Value

-BinId (int, optional) When specified, this will direct SERENEDI to load the Flat register

from the BIN system for the specified BIN ID.

P a g e | 98

-Table (string, optional) This is mandatory if the BIN ID is not provided. The SQL given in

this argument will be executed and the result will be processed into

the Flat register. If this is prefixed with the capital letters EXEC, then

the results of the following stored procedure will be assigned to the

Flat register.

-BinEndpointId (int, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint ID.

-BinEndpointAlias (string, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint Alias.

EXAMPLE

sapi-FlatFromBIN -BinId 1
sapi-FlatToHKey
sapi-SegPoolFromHKey
sapi-SegPoolToFile -Filename ‘c:\serenedi\shared\test.txt’ -Formatting '*~>^' -bolCR $true -bolLF
$true

sapi-FlatMergeToBIN
This command will merge the loaded Flat table to the BIN system.

If there are mappings present in the Flat that are not in the

destination BIN schema, messages will be generated unless the

SuppressSchemaMsg flag is set.

The return value from this command is an int of the BIN ID.

ERRORS

WFDS0010 DataShuttle service not processing queued
request – 20 minute timeout

WFDS0020 DataShuttle critical error while servicing
request

WFDS0030 Critical error creating temp table

Parameter Value

-Table (string, optional) When specified, this will override the default destination BIN table

with a provided table name.

-Filename (string, optional) When provided, this will be stored in the BIN_FILENAME column of

the new BIN entry.

-SupressSchemaMsg (boolean, optional) If set to True, SERENEDI will not generate message logs for new

columns that are not present in the destination Flat schema.

P a g e | 99

-BinEndpointId (int, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint ID.

-BinEndpointAlias (string, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint Alias.

-NoWait (boolean, optional) The default behavior of this cmdlet is to wait for the time it

normally takes for the data to be inserted into the destination Flat

table by the background service process. If this value is set to True,

the default behavior will be overridden and the script will continue

execution.

sapi-HKeyMergeToHDB
This command will merge the loaded HKey register to an existing

HDB tableset. If the destination HDB tableset does not have

column mappings that are present in the HKey, a message will be

generated once for that mapping unless the SuppressSchemaMsg

flag is set.

The return value from this command is an int of the BIN ID.

ERRORS

WFHDS0010 DataShuttle critical error while creating table

WFHDS0020 DataShuttle critical error while servicing
request

WFHDS0030 DataShuttle service not processing queued
request – 20 minute timeout

Parameter Value

-Prefix (string, optional) If supplied, this will override the default HDB_5010_<Specification

Name> prefix for the HDB tableset.

-Filename (string, optional) If supplied, the filename will be provided for this BIN entry.

-SupressSchemaMsg (boolean, optional) If set to True, SERENEDI will not generate message logs for columns

that can’t be stored in the existing HDB schema.

-BinEndpointId (int, optional) If supplied, this will provide the Endpoint ID for the destination

database connection.

-BinEndpointAlias (string, optional) If supplied, this will provide an Endpoint Alias for the destination

database connection.

P a g e | 100

-NoWait (boolean, optional) The default behavior of this cmdlet is to wait for the time it

normally takes for the data to be inserted into the destination HDB

tables by the background service process. If this value is set to True,

the default behavior will be overridden and the script will continue

execution.

sapi-HKeyForceMergeToHDB
This command will merge the loaded HKey register to an existing

HDB tableset. If the destination HDB tableset does not have

column mappings that are present in the HKey, new mappings will

be created and a message will be generated to that effect unless

the SuppressSchemaMsg flag is set.

The return value from this command is an int of the BIN ID.

ERRORS

WFHDS0010 DataShuttle critical error while creating table

WFHDS0020 DataShuttle critical error while servicing
request

WFHDS0030 DataShuttle service not processing queued
request – 20 minute timeout

Parameter Value

-Prefix (string, optional) If supplied, this will override the default HDB_5010_<Specification

Name> prefix for the HDB tableset.

-Filename (string, optional) If supplied, the filename will be provided for this BIN entry.

-SupressSchemaMsg (boolean, optional) If set to True, SERENEDI will not generate message logs for new

columns that will be added to the destination HDB schema.

-BinEndpointId (int, optional) If supplied, this will provide the Endpoint ID for the destination

database connection.

-BinEndpointAlias (string, optional) If supplied, this will provide an Endpoint Alias for the destination

database connection.

-NoWait (boolean, optional) The default behavior of this cmdlet is to wait for the time it

normally takes for the data to be inserted into the destination HDB

tables by the background service process. If this value is set to True,

the default behavior will be overridden and the script will continue

execution.

P a g e | 101

EXAMPLE

sapi-SegPoolFromFile -Filename ‘C:\serenedi\shared\seed\seed_837p.txt’
sapi-SegPoolToHKey
$binId = (sapi-HKeyForceMergeToHDB -Filename $eventData1 -NoWait $true)

sapi-HKeyFromHDB
This command will fetch data from an existing HDB BIN ID and load

it into the HKey register. The database connection used will be the

one that was used when the BIN ID was generated.

ERRORS

BINX0070 No entry with this BIN_ID exists in the database.

BINX0080 The ISA base table was not found for this BIN

BINX0090 Critical error during Fetch_BIN_HKey

Parameter Value

-BinId (integer, mandatory) The BIN ID of the HDB tableset present in the BIN system.

-EnvelopeOverrides (string, optional) If supplied, this will tell the HKey encoder to selectively ignore

certain structural data elements. This is useful when users want to

modify the BIN data and encode a new EDI file, and do not want to

inherit possibly bad / outdated information from the originally

decoded file such as segment counts or embedded timestamps. By

telling SERENEDI to discard these original values, it enables the

SERENEDI engine to recreate them with new values that reflect the

new state of the data. In turn, this can fix errors relating to bad

segment counts and other structural elements

The EnvelopeOverrides string should contain a comma delimited

string that contains the segments that should be culled from the

incoming HDB data.

Common segments to be culled for regeneration include:

GSHDR_GS04_D8

GSHDR_GS05_TM

STHDR_SE01_TS_SEG_CT

GSHDR_GE01_NR_TS_INCLUDED

GSHDR_GE02_GCN

STHDR_SE02_TCN

P a g e | 102

The default pipeline will automatically cull the following columns

from input:

STHDR_SE01_TS_SEG_CT

GSHDR_GE01_NR_TS_INCLUDED

Note: SERENEDI can also generate HL indexes and child codes. In

this case, it is better to specify all HL related columns here for all

loops to ensure that SERENEDI fully regenerates the HL structural

information without conflicting with the existing information.

CSV COMMANDS

sapi-CSVToDB
This will load a CSV file and commit it to a BIN endpoint. The CSV

file does not need to be CGIF2 formatted, but must contain only

string data. The first row must contain the column definitions and

the CSV must contain the same columns as a specified schema

table. If any columns are missing, extra, or out of order, an error

result will trigger.

This command gives SERENEDI the ability to import general CSV

data from an external source.

The destination table and schema table need to have an integer

column called BIN_ID, which will be populated during transfer

automatically from the BIN system. The source CSV should not have

this column.

ERRORS

CSV2DB0010 Unable to open DB Connection

STR: filename

CSV2DB0020 Error Processing CSV To Table

STR: column

CSV2DB0030 Error Processing CSV To Table – COLUMN NOT FOUND
IN DESTINATION SCHEMA AT EXPECTED POSITION

STR: column

CSV2DB0040 Error Processing CSV To Table – COLUMN MISMATCH
– DESTINATION SCHEMA CONTAINS DIFFERENT COLUMN
COUNT TO DESTINATION SCHEMA

N1: destination column count

N2: source column count

CSV2DB0050 Error Processing CSV To Table – ERROR BULK
LOADING FILE

STR: Exception message

P a g e | 103

CSV2DB0060 Error Processing CSV To Table – BIN_ID COLUMN
FOUND BUT NOT EXPECTED

STR: column

CSV2DB0070 General error sending CSV to DB

STR: Exception message

Parameter Value

-Filename (string, mandatory) This is the filename of the headered CSV to load. It should contain

only string quote–delimited data and have a single row header

defining the columns.

-SchemaTable (string, mandatory) This is the table that will be used to analyze the schema of the

incoming CSV table to ensure it matches the expected column

definition. If the destination table is not specified, the schema

table will be used as the destination table.

-DestTable (string, optional) This will override the schema table as the destination table where

the rows will be inserted.

-BinEndpointId (int, optional) This is the BIN Endpoint ID that will set the database destination

for this operation. If both this and the Alias are unset, the default

database will revert to the SERENEDI database.

-BinEndpointAlias (string, optional) This is the BIN Endpoint Alias that will set the database destination

for this operation. If both this and the ID are unset, the default will

revert to the SERENEDI database.

-TruncateTable (bool, optional) Setting this to True will truncate the destination table prior to

insertion. This should never be set unless the PROCESS_THROTTLE

is set to 1 on the base trigger so that this event will run in serial

and never in parallel.

sapi-FlatToCSV
This will save the Flat register to a CSV file.

ERRORS

DT2CSV0010 Datatable is null or empty.

DT2CSV0015 Critical error projecting FLAT to CSV

STR: exception message

DT2CSV0020 Critical error while setting up CSV

P a g e | 104

DT2CSV0030 Critical error while creating the rows of the

CSV

Parameter Value

-Filename (string, mandatory) This is the path to the CGIF2 Flat-formatted CSV file to be created.

sapi-FlatFromCSV
This will load the Flat register from a CSV file.

ERRORS

CSV2DT0010 Filename not Valid

CSV2DT0020 Syntax error parsing CSV

CSV2DT0030 Critical error parsing headers

CSV2DT0040 Critical error parsing rows

CSV2DT0050 Encountered CSV row with different number of
columns than expected

CSV2DT0060 Could not establish tree from mappings.

CSV2DT0070 No rows found.

Parameter Value

-Filename (string, mandatory) This is the path to the CGIF2 Flat-formatted CSV file.

ENVIRONMENT COMMANDS

sapi-ClearRegister
This command can clear individual state machine registers,

allowing fine-grained control of the session state machine. This is

an alternative to sapi-Reset, which completely refreshes the

session state.

ERRORS

GENR0010 Unknown Register

STR: register

Parameter Value

-Register (string, mandatory) Clears one of the specified registers:

HKEY

P a g e | 105

SEGPOOL

MSGLOG

ACK

FLAT

XML

sapi-EnvEndpointRemove
This command removes an existing database endpoint. The

command will fail if there are any BIN items associated with the

specified endpoint.

ERRORS

SENV0080 Critical error on EndpointRemove

STR: Exception message

Parameter Value

-BinEndpointID (int, mandatory) The BIN endpoint to be removed

sapi-EnvEndpointUpsert
This command inserts or updates a BIN endpoint, which is an alias

for a predefined database connection.

The return value from this command is an int of the BIN Endpoint

ID that was created, or -1 if this was an update operation.

ERRORS

SENV0070 Critical error on EndpointUpsert

STR: exception message

Parameter Value

-BinEndpointID (int, optional) This is provided when updating the information of an existing

endpoint.

-BinCnnStr (string, optional) This is the connection string for the database.

-BinDbType (string, optional) This is the database type. Valid values are:

SQLSERVER – Microsoft SQL Server

-BinEndpointAlias (string, optional) This is the optional alias that you can assign to the endpoint.

P a g e | 106

sapi-EnvSFTPSessionUpsert
This will create a new SecureFTP session or update the information

in an existing one. The “fingerprint” is not normally set, but will

instead be updated to reflect the first SecureFTP session it

connects to. If the server and/or fingerprint need to be reset,

setting it to VOID will return it to its initial state.

The return value is an int of the new SFTP session created, or -1 if

the session was updated.

ERRORS

SFTP0090 AddSessionFirstConnect Critical Error

STR: exception message

Parameter Value

-SFTPSessID (integer, optional) If provided, this will update the values of the SecureFTP session. If

not provided, it will update the information associated with this

session.

-Hostname (string, mandatory) This is either the IP address or hostname of the target SFTP Server.

-Username (string, mandatory) This is the username used to log in.

-Password (string, mandatory) This is the password used to log in.

-Params (string, optional) This is a comma-separated list of parameters used for the SFTP

session. Parameters represent various state flags that direct the

operation of the session. The valid values are:

SCP – Sessions will open as SCP sessions (SSH Copy) instead of

SecureFTP (default).

BINARY – All transfers will be done using BINARY mode.

ASCII – All transfers will be done using ASCII mode.

BOTH_MIRROR – Local and Remote file systems will be mirrored.

REMOTE_MIRROR – Remote file systems will be mirrored.

REMOVE_FILES – Files will be deleted during synchronization.

-Fingerprint (string, optional) If VOID is supplied for this parameter, the SecureFTP session

fingerprint will be reset until next login.

P a g e | 107

-PrivateKeyFile (string, optional) If supplied, this defines a private key file that will be used for

authentication.

-PrivateKeyPass (string, optional) If supplied, this provides a passphrase used to unlock the private

key file specified above.

Example:

This example demonstrates setup of a Secure FTP session and its association with a LOCAL_ARCHIVE trigger. Every new

file uploaded to the specified remote folder will fire an event once it is mirrored to the local file system. The following

SCORE script can be entered into the REPL command line system:

md C:\serenedi\shared\pipeline\test_sftp_mirror

$sftpSessId = (sapi-EnvSFTPSessionUpsert -Hostname <<your sftp server host>> -Username

<<user id>> -Password <<password>>)

Write-Host (sapi-EnvTriggerUpsert -TriggerName SFTP_TEST -Script $\Pipeline.ps1 -

TriggerType LOCAL_ARCHIVE -InitFolder $\test_sftp_mirror -SourceFolder / -SFTPSessId

$sftpSessId -PollInterval 60 -IsEnabled $true -ForceArg3 TEST_SFTP)

It will write the ID of the newly created trigger to the console. Given valid SFTP credentials, it will create a trigger that

polls the SecureFTP server every 60 seconds for new files, and trigger events when new files are found there.

sapi-EnvSFTPSessionRemove
This will remove an existing SecureFTP session.

ERRORS

SFTP0080 SessionRemove Critical Error

STR: exception message

Parameter Value

-SFTPSessID SFTP Session ID to be removed.

sapi-EnvTriggerRemove
This command will remove an existing trigger. Because of the

relational links between the tables, all downstream entries in

BIZ_MSG and BIZ_EVENTS, and BIN_LOG will need to be removed

before the database will allow this trigger to be deleted.

Either the ID or the name of the trigger needs to be supplied.

ERRORS

SENV0060 Critical error on TriggerRemove

STR: exception message

P a g e | 108

SENV0065 Invalid Name supplied to TriggerRemove

STR: trigger name

Parameter Value

-TriggerID (integer, optional) This is the trigger to be removed from the BIZ_TRIGGER table.

-TriggerName (string, optional) This is the name of the trigger to be removed.

sapi-EnvTriggerUpsert
This command will enable scripts to add new triggers or update

existing triggers in the Event system. The Trigger system is

explained further in the “Events” chapter.

The return value is the int value BizTriggerId of the new trigger if

inserting, or -1 if this is an update operation.

Parameter Value

-TriggerID (integer, optional) If you’re updating an existing trigger, this is the Trigger ID to modify.

If this is not provided, then the action will be treated as a brand-

new trigger.

-TriggerName (string, optional) This is the optional name of the trigger. It can be used in lieu of the

Trigger ID when making updates.

-Script (string, optional) This is the path to execute the PowerShell Core script that will be

run when the trigger is fired. For new triggers, this is mandatory.

-TriggerType (string, optional) This establishes the firing criteria for the trigger. The valid values

are:

LOCAL_UPLOAD

LOCAL_ARCHIVE

SQL

-InitFolder (string, optional) For Upload trigger types, this is the initial folder where files must

be placed to fire the trigger. The act of successfully moving the file

from the Init folder to the source folder is the primary firing

criterion for Upload triggers.

For Archive trigger types, the primary firing criterion is finding a

new file in the Init folder that was not previously used to fire an

event.

P a g e | 109

-SourceFolder (string, optional) For triggers not bound to an SFTP session, this specifies the

destination folder for Upload triggers. For LOCAL_ARCHIVE triggers

bound to SFTP sessions, this specifies the remote folder for the

SFTP session.

-SFTPSessID (integer, optional) This is the SecureFTP session that establishes a mirror with a

remote file archive. Every Poll Interval, the local mirror will be

refreshed by this SecureFTP session as described in the Event

system.

-FireLogic (string, optional) This establishes various filters that set conditions for firing events

based on groupings of files and/or month/day/time. More

information is available in the “Event System” section.

-SFTPPollDt (Date Time, optional) This is the last time this trigger’s SecureFTP session was scanned.

-LastFireDate (Date Time, optional) This is the last time the trigger was fired.

-PollInterval (integer, optional) This is the number of seconds the Event system will wait between

checks for this trigger’s firing criteria.

-IsEnabled (Boolean, optional) True will enable the trigger; False will disable it.

-MaxProcess (integer, optional) This is the maximum number of simultaneous executions allowed

for a trigger. Setting this to 1 will limit the trigger to serial execution

and prevent all parallel execution.

-ForceArg1 (string, optional) When provided, this will pass a fixed value to the trigger script for

Archive and SQL type triggers. It cannot be used for Upload trigger

types.

-ForceArg2 (string, optional) When provided, this will pass a fixed value to all trigger types.

-ForceArg3 (string, optional) When provided, this will pass a fixed value to all trigger types.

-ForceArg4 (string, optional) When provided, this will pass a fixed value to all trigger types

except the Immediate Event type, which uses Event Argument 4 to

provide the path to a PowerShell Core script.

ERRORS

SENV0050 Critical error on TriggerUpsert

STR: exception message

P a g e | 110

sapi-FetchVar
This command pulls data from the SERENEDI session object to

allow you to see the internal state. The return value from this

command is determined by the parameter passed to it.

ERRORS

MISC0010 Critical error fetching Variable <<Value>>

Parameter Value

-Value (string, mandatory) SEG – This returns a single-character Segment Separator.

ELE – This returns a single-character Element Separator.

SUBELE – This returns a single-character composite Element

Separator.

ELEREPEAT – This returns a single-character Element Repeat

separator.

SEG_CT – This returns the number of loaded segments in the

SegPool register.

ACK_CT – This returns the number of loaded segments in the

Acknowledgment register.

SPEC_CD – This returns the Specification Code for the active

specification. See “Appendix: Specification Codes” for the list of

return values.

SPEC_NM – This returns the short specification name for the active

specification. See “Appendix: Specification Codes” for the list of

return values.

CRIT_ERR – This returns Boolean True or False depending on the

critical error status of the SERENEDI session state.

FLAT_COL_CT – This returns 0 if no Flat register is loaded, or the

column count of the Flat register if it is.

FLAT_ROW_CT – This returns 0 if no Flat register is loaded, or the

row count of the Flat register if it is.

FLAT_DT – This returns a C# DataTable object representing the

active Flat register.

P a g e | 111

“HKEY_DT” – If the HKey register is set, this will return a

Dictionary<string, DataTable> object that holds the HKey rendered

as a series of datatables. Each Key Value Pair within the Dictionary

object is Keyed with ‘HDB_ISA’ for the first table, ‘HDB_GSHDR’ for

the second table, and so on for all of the loops present within the

HKey. The Data Tables follow the same specifications as the HDB

data system defined earlier in the documentation.

HKEY_XML – This returns an XDocument object representing the

XML.

HKEY_XML_LEN – This returns a 0 if the XML register is not loaded;

otherwise, it will return the string length of the XML.

HKEY_INFO – This returns two bar-separated numbers reflecting

the Loop count and Element count of the loaded HKey register. For

example:

480|1843

MSG_CT – This returns the number of messages in the MsgLog

register.

TREE_NM – This returns the short specification of the loaded Tree,

or writes Unloaded if the tree is not loaded.

MSG_HTML – This returns an HTML dump of all messages.

MSG_XML – This returns the message log in XML format.

SEG_TEXTBLOCK – This emits the text of the SegPool, along with

the established text division characters, to the console output.

LOOP_LIST – This outputs a space-delimited list of all the loops

(loaded with data or not) associated with the active loaded

specification.

 DEFAULT_ICN

DEFAULT_GCN

DEFAULT_TCN

These return the default values of the ICN/GCN/TCN envelope

control numbers.

Example

P a g e | 112

Dumping error messages to an HTML file:

sapi-FetchVar -Value “MSG_HTML” | Out-File “C:\serenedi\msg.html”

Dumping error messages to an XML file:

sapi-FetchVar -Value “MSG_XML” | Out-File “C:\serenedi\msg.xml”

sapi-InitializeSession
This command sets up the PowerShell hosting environment for

SERENEDI when it is being run outside of the primary SERENEDI

trigger/event environment, such as developing scripts in Visual

Code. You will need to supply the base path where SERENEDI is

installed as well as the SQL connection string to the serenediCore

distribution database. By running the code below, the

environment is prepped to run SCORE scripts with the full

complement of SERENEDI commands.

This command will also allow you to interactively debug previously

executed events by passing the BizEventId argument. In this way,

you can use the Visual Code interactive debugger on failed or

problematic events to diagnose the issue.

Import-Module -Name (Resolve-Path
‘serenedi.dll’)

sapi-InitializeSession -BasePath ‘C:\serenedi’
-MSSQL ‘Data
Source=(local);Database=serenediCore;User
id=sa;Password=strongPass1’

ERRORS

Emergency Error Log in Base
Directory

InitializeSession Spawn Error: exception
message

Parameter Value

-BasePath (string, mandatory) This tells SERENEDI the base SERENEDI folder (such as C:\serenedi

or /opt/serenedi) so it is able to locate other critical resources.

-BizEventId (int, optional) When provided, the SERENEDI session’s global variables will be

preset to the values associated with an already-fired event. This

can be useful for determining exactly what happened during that

event that caused an error.

P a g e | 113

-MSSQL (string, mandatory) When provided, links the SERENEDI session to the Microsoft SQL

Server-hosted serenediCore distribution database that is required

for executing SCORE scripts.

sapi-Reset
This will completely reset the active session state. If you need to

process two EDI files within a script session, it’s best to reset the

session between files so that various internal registers specific to

that transaction are cleared.

INTEGRITY COMMANDS

sapi-AddIntegrityRule
This command adds a custom rule to the integrity rules engine. The

RuleCode parameter must be a valid REPCode Boolean expression.

The rule will add the provided message to the message log when

the REPCode expression evaluates to True during a decode

operation.

ERRORS

RE0010 Rule Engine Add Rule Failure

STR: exception message

RE0020 Rule Engine Loop Unknown

STR: loop name

N1: rule order

TOKN0010 Invalid Map in Expression

STR: invalid map

TOKN0020 Failure to Tokenize

STR: REPCode text

TOKN0030 Failure to Parse Tokens

STR: REPCode text

Parameter Value

-SpecCd (string, mandatory) This value represents all the two-digit specification codes that are

linked for this rule.

-LoopNm (string, mandatory) This is the loop short name (like L2300) that links to this rule. Every

time this loop is encountered during a decode, this rule is executed.

P a g e | 114

-RuleOrder (int, mandatory) This is the order in which the rule is executed. Normally, it starts at

more than 10000 so it does not conflict with baseline integrity

rules.

-RuleCode (string, mandatory) This is the REPCode of the rule itself.

-Message (string, mandatory) This is the message added to the message log when this rule is

triggered during a decode.

-ShowXMLTokens (flag, optional) When this flag is given, an XML file showing the node composition

of the supplied REPCode is returned as a string value.

sapi-CheckIntegrity
This command requires that both the SegPool and the HKey

register be loaded, and will conduct a deep integrity check of the

file. Currently, the 834, 835, and 837 I & 837 P specifications are

the only supported transactions for the Deep Integrity analysis

engine. This command has no effect if run on other transactions.

Over 300 different errors are supported for these specifications.

Errors are identified by the Loop Short Name and the Rule Order.

These can be individually disabled with the DisableIntegrityRule

command.

ERRORS

INTEG0010 SegPool must be loaded and then decoded prior to
an Integrity operation.

sapi-DisableIntegrityRule

ERRORS

RE0020 Rule Engine Loop Unknown

RE0030 Rule Engine Order Unknown

RE0040 Rule Engine Disable Failure

Parameter Value

-SpecCd (string, mandatory) This is the specification code of the rule to disable.

-LoopNm (string, mandatory) This is the Short Loop Name of the rule to disable.

-RuleOrder (int, mandatory) The is the Rule Order of the rule to disable.

P a g e | 115

MSGLOG COMMANDS

sapi-AddMsg
This command adds a custom message to the MsgLog register.

Parameter Value

-Origin (string, optional) The origin is a short string that identifies the source of the

message. It will default to USER if not supplied.

-Message (string, mandatory) This is the required primary message.

-StringData (string, optional) This is additional string data that gives context to the primary

message.

-IntData1 (integer, optional) This is Integer Data 1 to give additional information to the message.

-IntData2 (integer, optional) This is Integer Data 2 to give additional information to the message.

sapi-GetMsg
This fetches a specific message from the MsgLog Session State

register. Use the command sapi-FetchVar -Value ‘ERR_CT’ to obtain

the total number of messages available.

The return value is a string of a single message. Messages consists

of five fields, separated by the pipe character |.

The format of the message is:

Origin | Message | String Data 1 | Integer Data 1 | Integer Data 2

ERRORS

MSG0010 Invalid Message ID

Parameter Value

-MessageID (int, mandatory) This is the index of the message to fetch.

sapi-MsgLogToFile
This command allows dumping of the current message log into a

CSV file in the file system in HTML format.

ERRORS

MSG0020 Unable to write file

STR: exception message

Parameter Value

P a g e | 116

-Filename (string, mandatory) This is the file to write the HTML-formatted message log.

sapi-MsgLogToHTML
This cmdlet will return the HTML as a string.

The return value is an HTML string of the message log.

ERRORS

MSG0030 Unable to render msglog

STR: exception message

REGISTER COMMANDS

sapi-AckFromFile
This will load the Acknowledgment register from a 999 file in the

file system.

ERRORS

ACK0010 Failure reading stream

STR: exception message

Parameter Value

-Filename (string, mandatory) This is the file path to a valid 999
transaction.

sapi-AckFromHKey
This will project the HKey to the Acknowledgment register. It is

predicated on the HKey being loaded with a valid 999

Acknowledgment transaction.

This command inherits the errors from the SegPoolFromHKey

command.

sapi-AckFromSegPool
This transfers the loaded SegPool register to the Acknowledgment

register and forces the session tree variable to the 999

specification.

sapi-AckToFile
This will save the Acknowledgment register to a 999 file in the file

system.

ERRORS

P a g e | 117

ACK0020 Error generating ACK to File

STR: exception message

Parameter Value

-Filename (string, mandatory) This is the file path to a valid 999 transaction to be created.

-Formatting (string, optional) This four-character string enables you to override the encoder to

use different text division characters:

Position 1: Element Separator Default: *

Position 2: Segment Separator Default: ~

Position 3: Composite Element Separator Default: :

Position 4: Repeating Element Default: ^

-bolCR (bool, optional) When true, inserts a Carriage Return (Char 13) after each segment.

Default: True.

-bolLF (bool, optional) When true, inserts a Line Feed (Char 10) after each segment.

Default: True.

sapi-AckToHKey
This will project the Acknowledgment register to the HKey register.

It inherits the errors from the SegPoolToHKey command.

sapi-AckToSegPool
This transfers the active Acknowledgment register to the SegPool

register.

sapi-FlatFromHKey
This command executes a translation from the Flat register to the

HKey register.

ERRORS

H2F0010 Critical error during ScanRows

STR: exception message

H2F0020 Critical error during ScanRows

STR: exception message

H2F0030 Critical error during Copy Previous Row

STR: exception message

H2F0040 Critical error during Populate RDR

P a g e | 118

STR: exception message

H2F0050 Critical error during SpawnDataRow

STR: exception message

H2F0060 Tree not loaded.

sapi-FlatToHKey
This command executes a translation from the HKey register to the

Flat register.

ERRORS

F2H0010 Flat Decode Critical Failure

STR: exception message

F2H0020 Flat Decode Critical Failure – Unparsable Loop

STR: name of last parsed loop

N1: number of unparsed loops remaining

F2H0040 Flat Unsupported Data Type

STR: column name Unsupported Type: type name

N1: column index

F2H0050 Column cannot be parsed

STR: column name

N1: column index

F2H0060 Inherited Iteration mapping is referencing a loop
iteration value not present in the Single
Iteration parent loop maps

STR: mapping name

F2H0065 Value Iteration mapping is referencing a loop
iteration value not present in the Single
Iteration parent loop maps

STR: mapping name

F2H0070 Critical Flat Data Conversion Error

STR: column name

F2H0080 Inherited Value mapping is referencing a value
not present in the Value Qualified parent loop
maps.

STR: column name

F2H0090 Flat register is unloaded.

F2H0100 Last column must be NEWROW to be a valid Flat.

F2H0110 Flat Decode Critical Error – Could not parse data
stream

STR: last parsed short loop name

P a g e | 119

sapi-GenerateAck
This command will generate a generic 999 Acknowledgment

transaction based on the currently loaded and processed SegPool,

HKey, and MsgLog registers. If the most recent SegPool to HKey

translation was successful, it will generate a Transaction Accepted

999 Acknowledgment. If the translation failed, it will generate a File

Rejected Acknowledgment and specify the segment at which

translation failed.

ERRORS

ACK0010 There was an exception while attempting to
generate the 999.

STR: exception message

ACK0020 GenerateAck error – no SegPool loaded

ACK0030 GenerateAck error – SegPool not decoded

sapi-ParseAck
This command will parse a loaded Acknowledgement and generate

a series of messages based on the contents. When a SegPool is

loaded with the transaction this Acknowledgement was generated

against, these messages can make it easier to understand why a

particular transaction was rejected.

The messages are defined in the HIPAA Implementation Guide for

999 specification.

ERRORS

ACK0040 Parse Acknowledgment – no Acknowledgment loaded.

sapi-SegPoolFromFile
This command loads an EDI transaction composed of elements and

segments into the SegPool register. Once it is loaded successfully,

the active specification is set based on the contents of the file.

Parameter Value

-Filename (string, mandatory) This is the path of the file system EDI file.

ERRORS

SEG0010 There was a low-level critical error loading the
SegPool

SEG0020 Filename not valid

P a g e | 120

SEG0030 ConsumeTextStream encountered a critical error.

SEG0040 Insufficient segments were found on the incoming
file.

SEG0050 Unknown Exception

STR: exception message

SEG0060 An ISA/IEA envelope in the stream is invalid
because it has non-unique partitioning
characters

STR: ELESEP/SUBELE/ELERPT/SEGSEP partitioning
characters

SEG0070 A critical error was encountered while parsing
the incoming SegPool stream.

STR: exception message

SEG0080 There was a critical error generating the text
stream for the SegPool.

STR: exception message

SEG0085 FetchSpecificSegment is being accessed with an
incorrect SegSlice index.

SEG0090 There was a critical error when fetching the
specified segment from the SegPool.

STR: exception message

N1: segment index

SEG0100 There was a critical error when fetching the
specified segment from the SegPool

STR: exception message

N1: segment index

SEG0110 There was a critical error encountered when
adding a new segment to the SegPool.

STR: exception message

SEG0120 There was a critical error encountered while
closing the SegPool.

STR: exception message

sapi-SegPoolFromHKey
This will translate the HKey register to the SegPool register.

ERRORS

H2SEG0010 SegPool_from_HKey Critical Error

STR: exception message

N1: segment count

H2SEG0020 Tree is undefined – encoding failed

P a g e | 121

H2SEG0030 HKey is unloaded – encoding failed

H2SEG0040 Critical Error during SegPool Encode

N1: segment count

sapi-SegPoolToFile
This will generate a new file system object from the loaded SegPool

register.

ERRORS

SEG2F0010 No SegPool loaded

SEG2F0020 There was a critical error generating the text
stream for the SegPool.

STR: exception message

Parameter Value

-Filename (string, mandatory) This is the path of the file system EDI file to be created.

-Formatting (string, optional) This four-character string enables you to override the SegPool

encoder to use different text-division characters:

Position 1: Element Separator Default: *

Position 2: Segment Separator Default: ~

Position 3: Composite Element Separator Default: :

Position 4: Repeating Element Default: ^

-bolCR (bool, optional) When true, inserts a carriage return (Char 13) after each segment.

Default: True.

-bolLF (bool, optional) When true, inserts a line feed (Char 10) after each segment.

Default: True.

sapi-SegPoolToHKey
This will translate the SegPool to the HKey register.

Note: all error messages listed below will store the segment index

of the time of the error in the N1 field.

ERRORS

H2SEG0010 Invalid Date Length

STR: element

H2SEG0020 Invalid Time Length

P a g e | 122

STR: element

H2SEG0040 Element Requirement conditions not met

H2SEG0050 Invalid Qualifiers in DTP segment

H2SEG0060 Date stamp is not in a valid character format

H2SEG0070 DateTime stamp is not in a valid character format

H2SEG0080 Time stamp is not in a valid character format

H2SEG0090 RD8 date stamp is not in a valid 17 character
format

H2SEG0100 Data present on an element marked as unused

STR: element index

H2SEG0110 Data is below the minimum length for this element

STR: element

H2SEG0120 Data exceeds the maximum length for this element

STR: element

H2SEG0130 Data not present on an element marked as required

STR: element index

H2SEG0140 Repeating element exceeds the allowed number of
iterations

STR: element index

H2SEG0150 Specified repeating element is not found in
validating code list

STR: element index

H2SEG0160 Specified repeating composite element is not
found in validating code list

STR: element index

H2SEG0170 Specified value-defined element is not valid

H2SEG0180 Specified qualifier element is not valid

H2SEG0190 Data present on a composite element marked as
unused

STR: element index

H2SEG0200 Specified composite value-defined element is not
valid

STR: element index

H2SEG0210 Specified composite value-defined element is not
valid

STR: element index

H2SEG0220 Segment present without elements

H2SEG0230 Required segment is missing

STR: Short Loop Name : Segment Name

P a g e | 123

H2SEG0240 Segment exceeds maximum iterations

STR: Short Loop Name : Segment Name

H2SEG0250 Required loop is not present

STR: Short Loop Name

H2SEG0260 Loop has too many iterations

STR: Short Loop Name

H2SEG0270 SegPool is not loaded.

H2SEG0280 Unable to determine specification – check the
ISA/GS/ST/BHT segments for formatting issues

H2SEG0290 Critical error during decoding on setup

STR: exception message

H2SEG0300 Premature End of File

STR: invalid segment

H2SEG0310 Invalid HL Child Indicator

STR: Inbound HL04 hl04 Expected HL04 expected

H2SEG0320 Critical error during decoding during parse

STR: exception message

H2SEG0330 Critical error during decoding

H2SEG0340 Could not decode file

STR: invalid segment

Parameter Value

-EnableCodeSetChecks (flag,
optional)

This option will load the code sets that are supported by SERENEDI

and raise error messages when invalid codes are used within

segments.

sapi-SegPoolToHTML
This will create an HTML view of the SegPool along with any

messages loaded highlighted in red.

The return value from this cmdlet is a string of the SegPool in HTML

form. Additionally, any messages in the MsgLog will be displayed.

ERRORS

S2HTML0010 Critical error creating HTML

STR: exception message

P a g e | 124

sapi-SetFlat
This command allows you to manually set the internal Flat register

from a DataTable formatted with valid CGIF2 maps. The DataTable

must be a fully compliant Flat DataTable, including an ending

NEWROW integer column, a specification tag in the first map, and

correct maps for all columns.

The sapi-FetchVar -Value ‘FLAT_DT’ command is the inverse of this

command and can be used to retrieve the Flat DataTable.

Parameter Value

-DT (DataTable, mandatory) DataTable to set. This is for advanced users who need to bypass the

normal methods of loading the Flat register.

SFTP COMMANDS

sapi-GetSFTPDirectory
Provided a predefined SecureFTP Session ID and a remote folder,

this will return a string array of the directory contents.

Each string corresponds to either a file or a directory. If it is a

directory, the value will be the directory name and ending in a |

character. If the entry is a file, the value will be the file name, a |

character, and the file size in bytes.

Parameter Value

-SFTPSessID (integer, mandatory) This is the unique ID of the predefined SecureFTP session.

-RemoteFolder (string, mandatory) This is the remote folder to be retrieved.

ERRORS

SFTP0140 Directory Failure

STR: remote directory

sapi-GetSFTPFile
This will fetch a remote file from a predefined SecureFTP session to

the local file system.

Parameter Value

-SFTPSessID (int, mandatory) This is the unique ID of the predefined SecureFTP session.

-LocalFile (string, mandatory) This is the local file to be created.

-RemoteFile (string, mandatory) This is the remote file to fetch.

P a g e | 125

ERRORS & MESSAGES

SFTP0030 File Downloaded

STR: filename

SFTP0040 SFTP Download Failure

STR: filename

sapi-PutSFTPFile
This will push a local file to a remote SecureFTP directory.

Parameter Value

-SFTPSessID (integer, mandatory) This is the unique ID of the predefined SecureFTP session.

-LocalFile (string, mandatory) This is the local file to be pushed to the remote file system.

-RemoteFile (string, mandatory) This specifies the name of the file as it will exist on the remote file

system.

ERRORS & MESSAGES

SFTP0120 File Uploaded

STR: filename

SFTP0130 SFTP Upload Failure

STR: filename

P a g e | 126

sapi-SFTPMirror
This command mirrors a remote file system with the local file

system. The direction of data flow is set within the SFTP Session

definition itself; the SecureFTP options are set via the sapi-

SFTPSessionUpsert command with the “Params” argument. The

available options are:

BOTH_MIRROR: New files in the local folder will be uploaded to

the remote server, and new remote server files will be downloaded

to the local folder.

REMOTE_MIRROR: New files in the local folder will be uploaded to

the remote server.

FILE_MOVE: After a successful file transfer, the source file is

removed.

The default behavior is to locally mirror: new server files will be

downloaded to the local folder.

Parameter Value

-SFTPSessID (integer, mandatory) This is the unique ID of the predefined SecureFTP session.

-RemoteFolder (string, mandatory) This is the remote folder on the SecureFTP server to mirror.

-LocalFolder (string, mandatory) This is the local file system folder that will mirror the remote folder.

SQL COMMANDS

sapi-ExecSQL
This executes arbitrary SQL in the specified database.

Parameter Value

-SQL (string, mandatory) SQL to be executed.

-BinEndpointId (int, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint ID.

-BinEndpointAlias (string, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint Alias.

ERRORS & MESSAGES

SQL0020 SQL Error: <<sql executed>>

STR: exception message

P a g e | 127

sapi-FetchDTFromDB
This command will return a DataTable based on a passed SQL

string. The database connection will default to the SERENEDI

database unless overridden via the BIN Endpoint ID or BIN

Endpoint Alias.

This returns a DataTable of the SQL results.

Parameter Value

-SQL (string, mandatory) This command will be used to execute a database SQL command

and then return the result set as a .NET DataTable object.

-BinEndpointId (int, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint ID.

-BinEndpointAlias (string, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint Alias.

ERRORS & MESSAGES

SQL0100 FetchDTFromDB critical error

STR: exception message

sapi-FetchDTFromDB1Row
This command will return a single-row DataTable based on a

passed SQL string. The database connection will default to the

SERENEDI database unless overridden via the BIN Endpoint ID or

BIN Endpoint Alias.

Parameter Value

-SQL (string, mandatory) This command will be used to execute a database SQL command

and then return the result set as a .NET DataTable object.

Only the first row will be returned.

-BinEndpointId (int, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint ID.

-BinEndpointAlias (string, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint Alias.

ERRORS & MESSAGES

SQL0100 FetchDTFromDB critical error

P a g e | 128

STR: exception message

sapi-FetchScalar
This command will return a single value based on a passed SQL

string. The database connection will default to the SERENEDI

database unless overridden via the BIN Endpoint ID or BIN

Endpoint Alias.

Parameter Value

-SQL (string, mandatory) This command will be used to execute a database SQL command

and then return the result as a single string, integer, or floating-

point value, depending on the value being returned.

-BinEndpointId (int, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint ID.

-BinEndpointAlias (string, optional) When given, this will override the default database connection and

use the one defined in the BIN system using the BIN Endpoint Alias.

ERRORS & MESSAGES

SQLS0010 Error while FetchingScalar: <<sql executed>>

STR: exception message

XML COMMANDS

sapi-HKeyFromXml
This will load the HKey register from the XML register.

ERROR

X2H0010 Critical Error during XML Decode

STR: last XML

N1: # of XML loops remaining

X2H0020 HKey not loaded – cannot encode

X2H0030 Critical Error during XML Iterate Loop

STR: last XML

N1: # of XML loops remaining

sapi-HKeyToXml
This will save the HKey register to the XML register.

ERROR

H2X0010 Critical Error during XML Encoding

P a g e | 129

STR: exception message

N1: segpool segment ID

H2X0020 HKey not loaded – cannot encode

H2X0030 Critical error during XML Encode

STR: exception message

sapi-SetXML
This command allows you to manually set the internal XML register

from the provided XML text.

ERROR

MISC0010 Invalid XML

STR: exception message

Parameter Value

-XML (string, mandatory) String of the XML to load. This must be formatted as a valid CGIF2

XML object.

sapi-XmlFromFile
This will load the XML register from a file.

Parameter Value

-Filename (string, mandatory) This is the path of the CGIF2-formatted XML file to be loaded.

ERROR

XMFF0010 Filename not Valid

STR: filename

XMFF0020 Critical error loading XML

STR: exception message

sapi-XmlToFile
This will save the XML register to a file.

Parameter Value

-Filename (string, mandatory) This is the path to the CGIF2-formatted XML to be created.

ERROR

XMFF0030 Critical error saving XML

STR: exception message

P a g e | 130

Appendix B: Specification Hierarchy Structures

These diagrams show the hierarchical relationship between the loops within a transaction. This is important for knowing

the parent/child loop relationships present within the HDB tables so that you know which table a parent ID is pointing to

in a child table.

Any loop that has a name ending in X or Y is a cutout loop. These loops are not defined in the HIPAA Implementation Guides

– instead, they are a SERENEDI convention in which a single segment is pulled from the parent loop because they are

defined as having unlimited repeats. Keeping this information isolated in its own dedicated loop makes the data easier to

access for both encoding and decoding.

5010_270 / M0 Health Care Eligibility Benefit Inquiry

5010_271 / N0 Health Care Eligibility Benefit Response

5010_276 / O0 Health Care Claim Status Request

GSHDR STHDR 2000A
2100A

2000B
2100B

2000C

2100C 2110C
2115C

2120C

2000D 2100D 2110D
2115D

2120D

GSHDR STHDR 2000A
2100A

2000B
2100B

2000C
2100C

2000D

2100D

2200D 2210D

2000E
2100E

2200E 2210E

GSHDR STHDR L2000A
L2100A

L2000B
L2100B

L2000C
L2100C L2110C

L2000D L2100D L2110D

P a g e | 131

5010_275C / O1 Patient Information

5010_275R / O2 Patient Information

6020_275C / O3 Patient Information

GSHDR STHDR

1000A

1000B

1000C 1100C

1000D

2000A
2100A

2100B 2110B

GSHDR STHDR

1000A

1000B

1000C

2000A 2100A 2110A

GSHDR STHDR

1000A

1000B

1000C 1100C

1000D

2000A
2100A

2100B 2110B

P a g e | 132

5010_277 / P0 Health Care Claim Status Response

5010_277CA / P5 Health Care Claim Acknowledgment

GSHDR STHDR 2000A
2100A

2000B

2100B

2200B 2200BX

2000C

2100C

2200C 2200CX

2000D

2100D

2200D
2200DX

2220D 2220DX

2000E
2100E

2200E
2200EX

2220E 2220EX

GSHDR STHDR 2000A

2100A 2200A

2000B

2100B 2200B 2200BX

2000C

2100C 2200C 2200CX

2000D 2100D 2200D
2200DX

2220D 2220DX

P a g e | 133

5010_278_REQ / Q0 Health Care Services Review – Request for Review

5010_278_NOT / Q1 Health Care Services Review – Notification

5010_278_RESP / R0 Health Care Services Review – Response

GSHDR STHDR 2000A
2010A

2000B
2010B

2000C

2010C

2000D 2010D

2000E

2010EA

2010EB

2010EC

2000F
2000FX

2010F

GSHDR STHDR 2000A
2010A

2000B
2010B

2000C

2010C

2000D 2010D

2000E

2010EA

2010EB

2010EC

2010ED

2000F 2010F

GSHDR STHDR 2000A
2010A

2000B
2010B

2000C

2010C

2000D 2010D

2000E

2010EA

2010EB

2010EC

2000F

2000FX

2010FA

2010FB

P a g e | 134

5010_278_ACK / R1 Health Care Services Review – Acknowledgment

5010_820 / S0

Payroll Deducted and Other Group Premium Payment for Insurance Products

GSHDR STHDR 2000A
2010A

2000B
2010B

2000C

2010C

2000D 2010D

2000E

2010EA

2010EB

2010EC

2010ED

2000F 2010F

GSHDR STHDR

1000A

1000B

1000C

2000A
2200A

2300A
2310A

2312A

2315A
2320A

2000B

2100BX

2200BX

2300B 2320B

P a g e | 135

5010_820X / S5 Health Insurance Exchange Related Payments

5010_824 / P7 Application Reporting for Insurance

5010_834 / T0 Benefit Enrollment and Maintenance

GSHDR STHDR

1000A

1000B

2000
2100

2300

GSHDR STHDR

1000A

1000B

2000 2100 2100X

GSHDR STHDR

1000A

1000B

1000C

2000

2100A

2100B

2100C

2100D

2100E

2100F

2100G

2100H

2200

2300

2310

2320 2330

2710 2750

P a g e | 136

5010_835 / U0 Health Care Claim Payment/Advice

GSHDR STHDR

STHDRX

1000A

1000B

2000 2100
2100X

2110
2110X

2110Y

P a g e | 137

5010_837I / W0 Health Care Claim: Institutional

GSHDR STHDR

1000A

1000B

2000A

2010AA

2010AB

2010AC

2000B

2010BA

2010BB

2000C 2010CA

*2300

2310A

2310B

2310C

2310D

2310E

2310F

2320

2330A

2330B

2330C

2330D

2330E

2330F

2330G

2330H

2330I

2400

2410

2420A

2420B

2420C

2420D

2430

P a g e | 138

5010_837P / X0 Health Care Claim: Professional

* The L2300 tables in the 837 I and 837 P specifications have two parent indexes – one for 2000B as shown in these

diagrams, and an additional, optional PAR_2000C_IX field that relates the claim to a specific iteration of the patient loop.

If there are no L2000C patient loops, then this field can be left null.

GSHDR STHDR

1000A

1000B

2000A

2010AA

2010AB

2010AC

2000B

2010BA

2010BB

2000C 2010CA

*2300

2310A

2310B

2310C

2310D

2310E

2310F

2320

2330A

2330B

2330C

2330D

2330E

2330F

2330G

2400

2410

2420A

2420B

2420C

2420D

2420E

2420F

2420G

2420H

2430

2440

P a g e | 139

Appendix C: Specification Codes
The table at left shows all of the specification codes possible.

The specification tag consists of a letter and a number.

Together, they define a specific transaction set and addenda

level.

The specification tag is used for CGIF2-formatted Flat, HDB,

and XML data projections, and is used to tell the SERENEDI

engine what specification these mappings belong to.

For Flat and HDB projections, the specification code is found

in the first ISA mapping. For XML, it’s attached to the

document root node.

In the 5010 Implementation Guides, the Addenda indicate

relatively minor updates to segments and requirement rules;

the loops are unchanged.

Specification Tag Transaction Set /

Addenda Level

M0 5010_270

M1 5010_270_A1

N0 5010_271

N1 5010_271_A1

O0 5010_276

O1 5010_275C

O2 5010_275R

O3 6020_275C

P0 5010_277

P5 5010_277CA

P7 5010_824

Q0 5010_278_REQ

Q1 5010_278_NOT

R0 5010_278_RESP

R1 5010_278_ACK

S0 5010_820

S1 5010_820_A1

S5 5010_820X

T0 5010_834

T1 5010_834_A1

U0 5010_835

U1 5010_835_A1

V0 5010_837D

V1 5010_837D_A1

V2 5010_837D_A2

W0 5010_837I

W1 5010_837I_A1

W2 5010_837I_A2

X0 5010_837P

X1 5010_837P_A1

P a g e | 140

Appendix D: Rules Engine
To understand what the Rules Engine (RE) in SERENEDI is used for, it helps to understand the three classes of integrity

checks SERENEDI is capable of running on decoded EDI files:

1. Basic Syntax – This is built into the decoding process and will generate messages based on simple syntax checks

within the segments and loops. It will check for the existence of mandatory loops, segments, and elements. It will

also check for elements containing invalid data and generate messages for all of these errors.

2. Special Segment Rules – Certain segments possess specific messages depending on the role the segment plays.

For example, if an ST segment starts a transaction with a certain Transaction Control Number (TCN) and an SE

segment ends the transaction with a different TCN, that is a segment rule violation and is flagged as such. If the

file is decoded with the “Code Set Validation” option, then it is at this level these code sets are validated:

a. Claim Adjustment Reason Codes

b. Claim Frequency Codes

c. ICD 9 CM Diagnosis

d. ICD 9 PCS Procedure Codes

e. ICD 10 CM Diagnosis

f. ICD 10 PCS Procedure Codes

g. National Drug Code

h. Provider Taxonomy Codes

i. Remittance Advice Reason Codes

j. State Abbreviations

k. 5-Digit ZIP Codes

l. Country Codes

3. Rules Engine – This contains all the logic for the SNIP Type 3-5 integrity checks. When a file is successfully decoded,

the SCORE script command sapi-CheckIntegrity can be used to validate these deeper integrity checks and generate

messages when integrity violations are found. Currently, only 834, 835, and 837 I & P are supported for these

integrity checks, with over 300 different rules. Each rule represents a specific error condition defined in the HIPAA

Implementation Guides and is defined by a small programming language called REP (Rules Engine Programming).

Individual Boolean REP scripts are called REP Code.

SERENEDI enables you to add custom REP rules. In this way, you can add custom validations to your business processes.

Because REP was designed specifically for this purpose, it contains customized operations that make it far easier to create

these rules compared to other ways, such as checking SQL elements. Each REP rule is codified in a single line of code that

evaluates to a single Boolean expression – if it is true, then the error is flagged and a message is generated.

REP CODE Overview

REP rules can only be run when both the SegPool register and HKey register are loaded, and the HKey represents the

decode of that particular SegPool. When these conditions are true, then the SERENEDI Integrity Engine can be invoked

using the sapi-CheckIntegrity command. However, if you wish to add custom validations, you can do so before this

command is invoked by using the sapi-AddIntegrityRule command.

It takes the following parameters:

P a g e | 141

Argument Type Purpose

SpecCd String This represents all the specifications that trigger the rule, without spaces or
separator characters. The loop specified in LoopNm must be present in all the
specifications listed. Example: W0W1W2 means the rule triggers on all 837 I
specifications, including A1 and A2.

LoopNm String This is the loop within the specification this rule is bound to. This rule is
executed for each instance of this loop within the HKey register. The loop
name should be prefixed by L if it is not a part of the envelope loops.

RuleOrder Integer This is the numeric order of the execution. For custom rules, this must be
10000 or higher.

RuleCode String This is the REP Code of the rule.

Message String This is the message added to the message log when the REP is fired. If there
were segment mappings within the REP Code that bind to this same loop,
then the messages will be tied to that segment. Otherwise, the message will
be tied to iterations of this loop that fire the message.

Before diving into actual examples of REP Codes, we need to distinguish the way CGIF2 maps are used within this syntax.

In the CGIF2 mapping system, SERENEDI can define elemental maps containing specific loop iterations and specific segment

iterations. For example, the 837 I 2320 loop can have 10 loop iterations, each referenced with a different loop iteration

prefix. With REP Codes, all numeric loop iterations are ignored, so a mapping that explicitly defines the first iteration of a

2320 loop will also “hit” on the second and third iterations. Furthermore, segment iterations are normally also ignored,

but this can be overridden with certain commands.

REP Codes are a single Boolean statement using a simple, common syntax. Behind the scenes, this syntax is tokenized into

nodes that represent literals of different data types and commands. These nodes are an internal format that allows the

Boolean expression to be evaluated quickly every time the associated loop for this REP Code occurs in the EDI file. There

are three types of nodes: Literal nodes, Map nodes and Operation nodes. Literal nodes can have one of five types – String,

Date/Time, Integer, Double, and Boolean. Map nodes are strongly typed references to data elements that can occur in the

same loop the rule is bound to, or in a parent or child loop. Operation nodes will resolve to one of these values, depending

on the operation.

REP CODE Example

To get an idea of what you can do with REP Codes, here is an actual integrity rule for the 837 P specification:

SPEC: X0X1 Loop: L2400 Order: 330 Message: AMT Tax should not exceed Line Item Charge Amount

L2400_AMT02_SALES_TAX_AMT.IsPresent && (L2400_AMT02_SALES_TAX_AMT >
L2400_SV102_LIN_ITM_CHG_AMT)

Because this REP Code is linked to the Service Line loop within the 837 Professional specification, this rule will be evaluated

once for every Service Line in a file. The IsPresent token evaluates the linked map and returns a True if the mapping exists

for this Service Line. The && is a Boolean “and” operation, followed by an expression that checks whether the Sales Tax

Amount segment exceeds the Line Item Charge Amount.

P a g e | 142

Because the first mapped element in the REP Code belongs to the AMT segment, and this segment lies on the same loop

it is bound to (Loop 2400), any messages generated by this integrity check will be bound to that segment. This is a simple

example to demonstrate what REP Codes are and how they form the backbone of the SERENEDI Integrity Engine.

Testing new REP CODES

New REP Code rules can only be added after a SegPool has been loaded and decoded to an HKey. Therefore, you will need

one of the included seed files to “prime” the environment so new rules can be added. It is possible to output an XML

format display of what the parsed REP Code looks like to the internal environment; this is proof that it compiled properly.

You can use the SERENEDI REPL environment or the SERENEDI Studio RunBox for this walkthrough – there is a slight

variation. For the purposes of this walkthrough, I will focus on the REPL environment. First, bring up the REPL command

screen, (TODO: how to do this), then:

sapi-SegPoolFromFile -Filename 'C:\serenedi\seed\seed_837p.txt'

sapi-SegPoolToHKey

Write-Host (sapi-AddIntegrityRule -SpecCd "X0X1" -LoopNm "L2400" -RuleOrder 10000 -
RuleCode "L2400_AMT02_SALES_TAX_AMT.IsPresent && (L2400_AMT02_SALES_TAX_AMT >
L2400_SV102_LIN_ITM_CHG_AMT)" -RuleMessage "AMT Tax should not exceed Line Item Charge
Amount" -ShowXMLTokens)

The output from this command follows:

<Storage Data="L2400_10000:AMT Tax should not exceed Line Item Charge Amount">

 <AND ND="L">

 <MapDoesExist ND="L">

 <Map ND="L">L2400_AMT02_SALES_TAX_AMT</Map>

 </MapDoesExist>

 <GT ND="R">

 <Map ND="L">L2400_AMT02_SALES_TAX_AMT</Map>

 <Map ND="R">L2400_SV102_LIN_ITM_CHG_AMT</Map>

 </GT>

 </AND>

</Storage>

Now, run the command sapi-CheckIntegrity. On the seed 837 P file, this will not fire the trigger because it doesn’t have

the AMT segment. Go ahead and make two copies of the SEED_837P file:

C:\serenedi\pipeline\seed_837p_pos_test.txt
C:\serenedi\pipeline\seed_837p_neg_test.txt

Edit the first file and place a new segment, AMT*T*294~, between the DTP*472 segment and the LX*2 segment. This is

the positive test, which replicates the condition being tested and shows that the check functions. On line 818, change the

SE*815 segment to SE*816 to reflect the new segment count.

Edit the second file and place a new segment, AMT*T*1~, in the same place as before. This is the negative test, which

proves that the new integrity rule doesn’t fire when the criteria do not match. Also, change the segment count as above.

P a g e | 143

Back in the REPL environment:

sapi-Reset

sapi-SegPoolFromFile -Filename ‘C:\serenedi\pipeline\seed_837p_neg_test.txt’

sapi-SegPoolToHKey

sapi-AddIntegrityRule -SpecCd "X0X1" -LoopNm "L2400" -RuleOrder 10000 -RuleCode
"L2400_AMT02_SALES_TAX_AMT.IsPresent && (L2400_AMT02_SALES_TAX_AMT >
L2400_SV102_LIN_ITM_CHG_AMT)" -RuleMessage "AMT Tax should not exceed Line Item Charge
Amount"

sapi-CheckIntegrity

An integrity check doesn’t result in any messages, which is good because this is the negative test.

Now, change the above script to replace seed_837p_neg_test with seed_837p_pos_test, and run the whole script again.

We get different results now:

Since this example is basically copying an existing rule, it’s no surprise we are seeing the same error twice. This is also a

very simple example; the REP Code syntax is capable of far more complex operations than demonstrated here.

REP CODE Token Library

Token(s) Value Operation

() The parenthesis tokens guide the tokenization of the REP Code expression. Enclose
every Boolean expression with its own set of parentheses to ensure the operations
occur in the correct order.

&& Boolean Logical AND

|| Boolean Logical OR

! Boolean This precedes a tokenized expression and reverses the Boolean result of that
expression.

+ Integer

String

Double

This operator takes on the type of its right node and adds the two expressions
together. Integers and Doubles will be added, and Strings will be concatenated.

- Integer

Double

DateTime

This operator takes on the type of its right node and subtracts the expressions.
Integers and Doubles will be subtracted. For DateTime expressions, the total days
difference will be divided by 365.25, converted to an Integer, and returned as an
Integer type.

Example:

((STHDR_BGN03_TS_CRTN_D8 – L2100A_IL_DMG02_MBR_DOB) < 19)

The above 834 REP Code expression will resolve to True if the difference between
the transaction set creation date and the member’s date of birth – the age of the
member at the time the transaction was generated – is less than 19 years.

P a g e | 144

< <= > >= Boolean These operators will do a value comparison between the left and right nodes. They
will work on Integer, Double, and DateTime values.

>= Boolean When this compares two strings, then the left-hand string is discarded and the right-
hand node is evaluated; it returns True if there is a match in the internal text pool
generated by the = operator below, and False otherwise.

!= Boolean This is a Boolean “Not Equal” operation, and will work on DateTimes, Doubles,
Integers, and Strings. Both strings will be trimmed of leading and trailing spaces prior
to the comparison.

== Boolean This is a Boolean “Equal To” operation, and functions similar to the != operation
immediately above.

= The Variable Assignment operator, Equals, plays two roles. In one role, it passively
links a variable defined by a string literal to a series of nodes, which are evaluated by
the Fetch token, described later.

If the right-hand expression evaluates to a string expression, then it stores the results
of the expression in an internal storage area.

Example (Passive Link):

‘varMedicare’ = ((L2000B_SBR09_CLM_FIL_IND_CD == ‘MA’) ||
(L2000B_SBR09_CLM_FIL_IND_CD == ‘MB’))

The above 837 P mapping tied to the L2000B loop stores a Boolean value depending
on whether the Claim Filing Indicator is set to Medicare Part A or Part B. This variable
can then be referenced by other REP Code rules, such as here:

L2300_REF_FAC_ID.IsPresent && (!’varMedicare’.Fetch)

Here, this rule tied to Loop 2300 in the same spec references the Medicare variable
and fires an error if the Care Plan Oversight ID is present in non-Medicare claims.

Example (String Accumulator):

834, Loop 2000, Order 160

 'varSub' = L2000_INS01_MEM_IND + L2000_INS03_MAINT_TYP_CD
+ L2000_REF_SUB_NR

834, Loop 2000, Order 170

('varSub' >= ('N021' + L2000_REF_SUB_NR)) &&
(L2000_INS01_MEM_IND == 'Y') && (L2000_INS03_MAINT_TYP_CD
== '021')

In the first REP Code, the right-hand expression evaluates to a string value, and the
‘varSub’ string literal is ignored – the results are stored in a single internal text pool.
This can be reset using the Clear command, but will otherwise accumulate values.
Since this expression does not evaluate to a Boolean True, there is no Rule Message
associated with this rule – it works in conjunction with another REP Code.

The second REP Code uses the VarFetch function and the >= token, and returns a
Boolean True if the string expression exists within the text pool. In this business

P a g e | 145

context, it means that a dependent with the same subscriber number as the current
loop preceded this one, which is a violation of the HIPAA Integrity rules.

Clear This completely resets all variables.

‘XYZ’ String String literals are enclosed in single quotes. When passing commands in PowerShell
Core, it’s important to use double quotes around all expressions.

123 Integer Integer literals can be plus or minus, and have no decimal point.

#19000101# DateTime DateTime literals are always 8 digits (Year – Month – Day format) surrounded by hash
characters.

0.00 Double Double literals will always have a decimal point.

True Boolean Boolean literal

False Boolean Boolean literal

Fetch This is attached to a string literal of a variable name, and retrieves the value stored
in that value. This node takes on the type of whatever the variable was assigned to.

EvalExact This is attached to a mapping with explicit segment repeats. Normally, REP Code
mappings match on the first occurrence within a loop without regard to loop
numeric iterations or segment iterations. EvalExact allows checking on explicit
iterations.

Example:

L2100_02PER02_CLM_CON_NM.IsPresent &&
(L2100_02PER02_CLM_CON_NM.EvalExact ==
L2100_PER02_CLM_CON_NM)

This 835 REP Code example shows how to ensure the second iteration if the name in
the 2100 PER segment doesn’t match in the first iteration.

Length Integer This returns the length of the attached string expression.

Example:

L2300_CLM01_PT_CTL_NR.Length > 20

This evaluates to True when the length of the Patient Control Number exceeds 20
characters.

%=

%!

Boolean These tokens represent the MapIsMatched and MapNotMatched operations. This is
a set operation in that it takes a single value evaluated in the left-hand node and
assesses it against a set of values represented in the right-hand node. The right-hand
node is usually a mapping that is higher within the loop hierarchy tree, usually in a
loop that repeats. This operation will gather all values that satisfy the right-hand map
in relation to the left-hand map; if a single match is found, the MapIsMatched will
return a True result, and will otherwise return False. Likewise, MapNotMatched will
return True unless a match is found.

Example:

L2420E_REF0402_PYR_ID.IsPresent &&
(L2420E_REF0402_PYR_PRI_ID %! L2330B_01_NM109_HCFA_PLAN_ID)
&& (L2420E_REF0402_PYR_PRI_ID %! L2330B_01_NM109_PAYR_ID)

P a g e | 146

In the above example from the 837 Professional spec, this rule checks to see if the
Loop 2420E Other Payer Primary Identifier matches any of the 2330B Payer IDs or
HCFA Plan IDs in any of the iterations of the 2320 loops that lie relative to this 2420E
loop within the same claim.

IsPresent

NotPresent

IsPresentExact

NotPresentExact

Boolean These operations will return True if the attached map exists, and False otherwise.
This is also a set-based operation and can operate in different loops then the one the
rule is bound to, similar to the example above for the %= token. The operations
normally do not check for segment iterations, so for segments that can have multiple
repetitions, it will match regardless of the iteration. If the Exact operations are used,
then the segment iteration is used for the evaluation.

IsPOBox Boolean This will evaluate the attached map and return True if it appears to be formatted like
a PO Box address.

IsChild

NotChild

Boolean This command is used in deeper-level mappings relative to the loop bound to the
rule to see if that loop exists as a child to the bound loop. It must be bound to an
element that is mandatory for the loop in question. It will return True if that loop is
a child loop of the bound loop (existing lower on the hierarchy tree), False otherwise
for the IsChild token, and the reverse of that for the NotChild token.

*= This token is the Dynamic Assign operator. The string literal to the left of the token is
resolved to be the name of a new variable, which is assigned a value with the
expression to the right of the token. This value can later be retrieved within another
REP Code via the DynFetch token.

DynFetch This pulls values that were assigned via the Dynamic Assignment operator. It’s useful
when you need to store values across various iterations of loops and make
comparisons.

VSum

HSum

Double VSum, or Vertical Summation, is an operation in which a higher-order loop needs to
sum up values lying within standard child loops.

HSum, or Horizonal Summation, is an operation in which a higher-order loop needs
to sum up values lying within loops parented to non-standard iterated loops. This
includes loops with a loop count of less than 25, value-defined loops, and anything
not defined as a standard loop.

Example:

L2430_01_SVD02_SVC_LIN_PD_AMT.IsChild &&
(L2400_SV102_LIN_ITM_CHG_AMT !=
(L2430_01_SVD02_SVC_LIN_PD_AMT.VSum +
L2430_01_01CAS03_ADJ_AMT.VSum +
L2430_01_01CAS06_ADJ_AMT.VSum +
L2430_01_01CAS09_ADJ_AMT.VSum +
L2430_01_01CAS12_ADJ_AMT.VSum))

In the above REP Code, the VSum command is used to dynamically sum up the
Adjustment Amounts throughout the 2430 loop. Since this command is bound to the
837 Professional 2400 Claim Line loop, it sets up a comparison between the Line Item
Charge Amount and the 2430 Claim Adjustment segments.

PRSum Double This is similar to a VSum operation as above, except it will match only in mappings
that belong to CAS*PR segments.

